Dielectric Properties of Copper(II) Oxide Nanoparticles Synthesized in a Vacuum Arc Discharge

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have studied the effect of the size of copper oxide nanoparticles on their electrical transport properties. The nanoparticles have been synthesized by vacuum arc deposition and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and electron microscopy in order to determine their phase composition and size. The results demonstrate that raising the substrate temperature in the deposition process from 300 to 600 K increases the size of the forming nanoparticles from 5.4 to 37.7 nm. The frequency dependences of the electrical conductivity, dielectric permittivity, and dielectric loss tangent of the CuO nanoparticles in the range form 20 Hz to 1 MHz are influenced by their size. In the size range under consideration, distinctions in the dielectric properties of the nanoparticles can be understood in terms of the competing contributions of the competing contributions of the resistive and capacitive components for the particles and grain/particle boundaries.

About the authors

I. V. Karpov

Siberian Federal University; Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences

Email: sfu-unesco@mail.ru
660041, Krasnoyarsk, Russia; 660036, Krasnoyarsk, Russia

A. V. Ushakov

Siberian Federal University; Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences

Email: sfu-unesco@mail.ru
660041, Krasnoyarsk, Russia; 660036, Krasnoyarsk, Russia

L. Yu. Fedorov

Siberian Federal University; Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences

Email: sfu-unesco@mail.ru
660041, Krasnoyarsk, Russia; 660036, Krasnoyarsk, Russia

E. A. Goncharova

Siberian Federal University; Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences

Email: sfu-unesco@mail.ru
660041, Krasnoyarsk, Russia; 660036, Krasnoyarsk, Russia

M. V. Brungardt

Siberian Federal University; Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: sfu-unesco@mail.ru
660041, Krasnoyarsk, Russia; 660036, Krasnoyarsk, Russia

References

  1. Koteeswari P., Sagadevan S., Fatimah I., Sibhatu A.K., Abd Razak S.I., Leonard E., Soga T. Green Synthesis and Characterization of Copper Oxide Nanoparticles and Their Photocatalytic Activity // Inorg. Chem. Commun. 2022. V. 144. P. 109851. https://doi.org/10.1016/j.inoche.2022.109851
  2. Angı A., Sanlı D., Erkey C., Birer Ö. Catalytic Activity of Copper(II) Oxide Prepared via Ultrasound Assisted Fenton-like Reaction // Ultrason. Sonochem. 2014. V. 21. № 2. P. 854–859. https://doi.org/10.1016/j.ultsonch.2013.09.006
  3. Senthilkumar V., Kim Y.S., Chandrasekaran S., Rajagopalan B., Kim E.J., Chung J.S. Comparative Supercapacitance Performance of CuO Nanostructures for Energy Storage Device Applications // RSC Adv. 2015. V. 5. P. 20545–20553. https://doi.org/10.1039/C5RA00035A
  4. Федоров Л.Ю., Ушаков А.В., Карпов И.В. Синтез и хеморезистивная чувствительность к водороду наноструктурированных пленок CuO // Письма в ЖТФ. 2022. Т. 48. № 14. С. 18–22. https://doi.org/10.21883/PJTF.2022.14.52864.19197
  5. Lillo-Ramiro J., Guerrero-Villalba J.M., Mota-González M.L., Aguirre-Tostado F.S., Gutiérrez-Heredia G., Mejía-Silva I., Carrillo-Castillo A. Optical and Microstructural Characteristics of CuO Thin Films by Sol Gel Process and Introducing in Non-Enzymatic Glucose Biosensor Applications // Optik. 2021. V. 229. P. 166238. https://doi.org/10.1016/j.ijleo.2020.166238
  6. Zhang Q., Zhang K., Xu D., Yang G., Huang H., Nie F., Liu C., Yang S. CuO Nanostructures: Synthesis, Characterization, Growth Mechanisms, Fundamental Properties, and Applications // Prog. Mater. Sci. 2014. V. 60. P. 208–337. https://doi.org/10.1016/j.pmatsci.2013.09.003
  7. Zoolfakar A.S., Rani R.A., Morfa A.J., O’Mullaned A.P., Kalantar-Zadeh K. Nanostructured Copper Oxide Semiconductors: a Perspective on Materials, Synthesis Methods and Applications // J. Mater. Chem. C. 2014. V. 2. P. 5247–5270. https://doi.org/10.1039/C4TC00345D
  8. El-Trass A., ElShamy H., El-Mehasseb I., El-Kemary M. CuO Nanoparticles: Synthesis, Characterization, Optical Properties and Interaction with Amino Acids // Appl. Surf. Sci. 2012. V. 258. P. 2997–3001. https://doi.org/10.1016/j.apsusc.2011.11.025
  9. Rahmatolahzadeh R., Aliabadi M., Motevalli K. Cu and CuO Nanostructures: Facile Hydrothermal Synthesis, Characterization and Photocatalytic Activity Using New Starting Reagents // J. Mater. Sci. – Mater. Electron. 2017. V. 28. P. 148–156. https://doi.org/10.1007/s10854-016-5504-3
  10. Сивков А.А., Назаренко О.Б., Ивашутенко А.С., Сайгаш А.С., Степанов К.И. Плазмодинамический синтез ультрадисперсных порошков на основе оксида меди // Изв. вузов. Физика. 2014. Т. 57. № 12–3. С. 309–314.
  11. Гончарова Д.А., Лапин И.Н., Савельев Е.С., Светличный В.А. Структура и свойства наночастиц, полученных методом лазерной абляции объемных мишеней металлической меди в воде и этаноле // Изв. вузов. Физика. 2017. Т. 60. № 7. С. 98–106.
  12. Oruç Ç., Altındal A. Structural and Dielectric Properties of CuO Nanoparticles // Ceram. Int. 2017. V. 43. № 14. P. 10708–10714. https://doi.org/10.1016/j.ceramint.2017.05.006
  13. Makhlouf S.A., Kassem M.A., Abdel-Rahim M.A. Particle Size-Dependent Electrical Properties of Nanocrystalline NiO // J. Mater. Sci. 2009. V. 44. № 13. P. 3438–3444. https://doi.org/10.1007/s10853-009-3457-0
  14. Карпов И.В., Ушаков А.В., Федоров Л.Ю., Гончарова Е.А., Брунгардт М.В. Исследование влияния размерных и поверхностных эффектов на электрофизические свойства наночастиц NiO, полученных в вакуумно-дуговом разряде // Неорган. материалы. 2022. Т. 58. № 10. С. 1079–1086. https://doi.org/10.31857/S0002337X22100074
  15. Карпов И.В., Ушаков А.В., Лепешев А.А., Федоров Л.Ю. Плазмохимический реактор на основе импульсного дугового разряда низкого давления для синтеза нанопорошков // Журн. техн. физики. 2017. Т. 87. № 1. С. 140–145. https://doi.org/10.21883/JTF.2017.01.1851
  16. Ушаков А.В., Карпов И.В., Федоров Л.Ю., Гончарова Е.А., Брунгардт М.В., Дёмин В.Г. Исследование влияния парциального давления кислорода на фазовый состав наночастиц оксида меди вакуумно-дугового синтеза // ЖТФ. 2021. Т. 91. № 12. С. 1986–1991. https://doi.org/10.21883/JTF.2021.12.51764.157-21
  17. Кожанов А.Е., Никорич А.В., Рябова Л.И., Хохлов Д.Р. Проводимость твердых растворов Pb1–xSnxTe(In) в переменном электрическом поле // Физика и техника полупроводников. 2006. Т. 40. № 9. С. 1047–1050.
  18. Deuermeier J., Gassmann J., Brotz J., Kleina A. Reactive Magnetron Sputtering of Cu2O: Dependence on Oxygen Pressure and Interface Formation with Indium Tin Oxide // J. Appl. Phys. 2011. V. 109. P. 113704. https://doi.org/10.1063/1.3592981
  19. Chen J.W., Rao G.N. CuO Nanoparticles as a Room Temperature Dilute Magnetic Giant Dielectric Material // IEEE Trans. Magn. 2011. V. 47. № 10. P. 3772–3775. https://doi.org/10.1109/TMAG.2011.2149505
  20. Psarras G.C. Hopping Conductivity in Polymer Matrix–Metal Particles Composites // Composites. Part A. 2006. V. 37. № 10. P. 1545–1553. https://doi.org/10.1016/j.compositesa.2005.11.004
  21. Koshy J., Soosen S.M., Chandran A., George K.C. Correlated Barrier Hopping of CuO Nanoparticles // J. Semicond. 2015. V. 36. P. 122003. https://doi.org/10.1088/1674-4926/36/12/122003
  22. Biju V., Abdul Khadar M. AC Conductivity of Nanostructured Nickel Oxide // J Mater. Sci. 2001. V. 36. P. 5779–5787. https://doi.org/10.1023/A:1012995703754

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (134KB)
3.

Download (234KB)
4.

Download (1MB)
5.

Download (902KB)
6.

Download (66KB)
7.

Download (71KB)
8.

Download (61KB)

Copyright (c) 2023 И.В. Карпов, А.В. Ушаков, Л.Ю. Федоров, Е.А. Гончарова, М.В. Брунгардт

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».