Equations of Elastic 2D-Bending of Thick Plates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

At present, bending deformations of lithospheric plates and bending vibrations of structures during earthquakes are studied on the basis of the theory of bending of thin plates with a thickness-to-length ratio h/L <1/10 formulated by Kirchhoff in 1850. However, even for long oceanic plates, the effective ratioh/Lis about 1/8. Therefore, this paper considers the possibility of using theories of bending of thick plates. In technology, the equations of Timoshenko (1922) and Reissner (1945) found by the variational method have been used for calculating the bending of thick plates (along with numerical solutions of the general elasticity equations) over the past 80 years to the present day. However, in articles, textbooks and reference books on elasticity theory, these equations are given with indications of their inaccuracy and systematic error due to the neglect of transverse deformation during bending. In this paper, a system of equations for 2D bending of thick plates of the second approximation is derived by directly transforming the original general equations of elasticity using the method of successive approximations. It is noteworthy that, by refining the Timoshenko and Reissner equations, the obtained equations of the second approximationdo not become more complicated, since only the numerical coefficient in the differential equation for the bending function is changed and additive terms are added to the algebraic expressions for stresses and displacements. Significantly simplifying the solution compared to the general elasticity equations in partial derivatives, the obtained differential ordinary equation of bending neglects only small terms above the third order of smallness (h/L)3 . Comparison of the solutions of the obtained equations with the test analytical solution of the exact general elasticity equations showed their complete coincidence with an accuracy ofup to the fourth order of smallness. For thick plates at h/L=1/3, compared to exact solutions of general elasticity equations, the solutions of the Kirchhoff equation give a systematic error for the bending function ofup to 20%, the solutions of the Timoshenko–Reissner equation - upto 5%, and the obtained refined equations have an inaccuracy of solutions ofless than 1%. An example of using the obtained equations for a refined calculation of the bending of oceanic plates is given, in which the solution is obtained in analytical form.

About the authors

V. P. Trubitsyn

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: vtrubi@yandex.ru
Moscow

A. P. Trubitsyn

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: atrub@yandex.ru
Moscow

References

  1. Аннин Б.Д, Волчков Ю.М. Неклассические модели пластин и оболочек // Прикладная механика и техническая физика. 2016. Т. 57. №5. С. 5–14.
  2. Васильев В.В. Классическая теория пластин — история и современный анализ // Механика твердого тела. 1998. №3. С. 46–58.
  3. Васильев В.В., Лурье С.А. К проблеме построения неклассических теорий пластин // Механика твердого тела. 1990. Т. 2. №5. С. 158–167.
  4. Горбачев В.И., Кабанова Л.А. О постановке задачи в общей теории Кирхгофа–Лява неоднородных анизотропных пластин // Вестник МГу. Сер. 1. Математика, Механика. 2018. №3. С. 43–49.
  5. Жилин П.А. О теориях Пуассона и Кирхгофа с позиций современной теории пластин // Механика твердого тела. 1992. №3. С. 48–63.
  6. Корчинский И.Л., Бородин Л.А., Гроссман А.Б., Преображенский В.С., Ржевский В.А., Ципенюк И.Ф., Шепелев В.Ф. Сейсмостойкое строительство зданий. М.: Высшая школа. 1971. 320 с.
  7. Теркот Д., Шуберт Дж. Геодинамика. М.: Мир. 1985. 360 с.
  8. Тимошенко С.П., Гудьер Дж. Теория упругости. М.: Наука. 1979. 550 с.
  9. Трубицын В.П., Трубицын А.П. Деформации упругого изгиба в океанических литосферных плитах // Докл. РАН. 2022. Т. 504. №1. С. 60–64.
  10. Трубицын А.П., Трубицын В.П. Поправки к теории упругого изгиба тонких плит для 2D-моделей в приближении Рейсснера // Физика Земли. 2023. №4. С. 3–15.
  11. Трубицын В.П, Трубицын А.П. Сравнительный анализ и единый вывод уравнений Тимошенко для изгиба балок и уравнений Рейсснера для 2D-изгиба толстых плит // Физика Земли. 2024. №2. С. 98–111.
  12. Batista M. An exact theory of the bending of transversely inextensible elastic plates // Acta Mechanica. 2015. V. 226. P. 2899–2924.
  13. Batista M. Comparison of Reissner, Mindlin and Reddy plate models with exact three dimensional solutions for simply supported isotropic and transverse inextensible rectangular plate // Meccanica. 2012. V. 47. P. 257–268.
  14. Cazzani A., Stochino F., Turco E. On the whole spectrum of Timoshenko beams. Part 1. A theoretical revisitation // Z. Angew. Math. Phys. 2016. V. 67. P. 1–30.
  15. Challamel N., Elishakoff Is. A brief history of first-order shear-deformable beam and plate models // Mechanics Research Communications. Elsevier. 2019. V. 102. P. 103389.
  16. Elishakoff I. Who developed the so-called Timoshenko beam theory? // Mathematics and Mechanics of Solids. 2020. V. 25(1). P. 97–116.
  17. Kaneko T. On Timoshenko′s correction for shear in vibrating beams // J. Phys. D: Appl. Phys. 1975. V. 8. P. 1927–1936.
  18. Reissner E. The effect of transverse shear deformation on the bending of elastic plates // J. Appl. Mech. 1945. V. 12(2). P. A69–A77.
  19. Szilard R. Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods. John Wiley & Sons, Inc. 2004. 1024 p.
  20. Timoshenko S.P. About transverse vibrations of rods of uniform cross-section // Phil. Mag. 1922. V. 43. P. 125–131.
  21. Timoshenko S.P. On the correction factor for shear of the differential equation for transverse vibrations of bars of uniform cross-section // Phil. Mag. 1921. V. 44. P. 744–752.
  22. Vijayakumar K. Review of a few selected theories of plates in bending // International Scholarly Research Notices. 2014. Article ID 291478.
  23. Zhang F., Lin J., Zhou Z. Flexural bending curvature and yield zone of subducting plates // International Geology Review. 2019. doi: 10.1080/00206814.2019.1671237.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).