Features of the Sakhalin Mantle Phase Transition Zone Based on Converted Wave Data
- Autores: Goev A.G.1, Oreshin S.I.2, Kostylev D.V.3,4, Kostyleva N.V.4
-
Afiliações:
- Sadovsky Institute of Geospheres Dynamics, Russian Academy of Sciences
- Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
- Sakhalin Branch, Geophysical Survey, Russian Academy of Sciences
- The Institute of Marine Geology and Geophysics of the far Eastern branch of the Russian Academy of Sciences
- Edição: Nº 2 (2025)
- Páginas: 36-42
- Seção: Articles
- URL: https://ogarev-online.ru/0002-3337/article/view/307788
- DOI: https://doi.org/10.31857/S0002333725020037
- EDN: https://elibrary.ru/DKRXCV
- ID: 307788
Citar
Resumo
Palavras-chave
Sobre autores
A. Goev
Sadovsky Institute of Geospheres Dynamics, Russian Academy of Sciences
Email: goev@idg.ras.ru
Moscow, Russia
S. Oreshin
Schmidt Institute of Physics of the Earth, Russian Academy of SciencesMoscow, Russia
D. Kostylev
Sakhalin Branch, Geophysical Survey, Russian Academy of Sciences; The Institute of Marine Geology and Geophysics of the far Eastern branch of the Russian Academy of SciencesMoscow, Russia; Yuzhno-Sakhalinsk, Russia
N. Kostyleva
The Institute of Marine Geology and Geophysics of the far Eastern branch of the Russian Academy of SciencesYuzhno-Sakhalinsk, Russia
Bibliografia
- Авдейко Г.П., Попруженко С.В., Палуева А.А. Современная тектоническая структура Курило-Камчатского региона и условия магмообразования. Геодинамика и вулканизм Курило-Камчатской островодужной системы. ИВГиГ ДВО РАН. Петропавловск-Камчатский. 2001. 428 с.
- Бурмаков Ю.А., Винник Л.П., Косарев Г.Л. и др. Структура и динамика литосферы по сейсмическим данным. М.: Наука. 1988. 221 с.
- Винник Л.П. Cейсмология приемных функций // Физика Земли. 2019. № 1. С. 16-27.
- Винник Л.П., Косарев Г.Л., Петерсен Н.В. Передаточные функции мантии в дальневосточной зоне субдукции // Докл. РАН. 1997. Т. 353. № 3. С. 379-382.
- Тараканов Р.З., Веселов О.В., Андреева М.Ю. О возможной границе фазовых переходов на глубине 350 км для зоны перехода от континента к океану // Докл. РАН. 2015. Т. 460. № 5. С. 585-588.
- Bianchi M.B., Assumpção M., Koch C., Beck S. Effect of the cold Nazca Slab on the depth of the 660 km discontinuity in South America // Journal of South American Earth Sciences. 2021. V. 112. Part 1. 103607. doi: 10.1016/j.jsames.2021.103607
- Cui Q., Zhou Y., Liu L., Gao Y., Li G., Shengfeng Zhang S. The topography of the 660-km discontinuity beneath the Kuril-Kamchatka: Implication for morphology and dynamics of the northwestern Pacific slab // Earth and Planetary Science Letters. 2023. V. 602. 117967.
- Fichtner A., van Herwaarden D.P., Afanasiev M., Simutė S., Krischer L., Çubuk-Sabuncu Y., Taymaz T., Colli L., Saygin E., Villaseñor A. et al. The collaborative seismic earth model: generation 1 // Geophysical Research Letters. 2018. V. 45. № 9. P. 4007-4016.
- Fukao Y., Obayashi M. Subducted slabs stagnant above, penetrating through, and trapped belowthe 660 km discontinuity // Journal of Geophysical Research: Solid Earth. 2013. V. 118. P. 5920-5938.
- Fukao Y., Obayashi M. Subducted slabs stagnant above, penetrating through, and trapped belowthe 660 km discontinuity // Journal of Geophysical Research: Solid Earth. 2013. V. 118. P. 5920-5938.
- Goes S., Yu C., Ballmer M.D. et al.Compositional heterogeneity in the mantle transition zone // Nature Review Earth & Environment. 2022. V. 3. P. 533-550 doi: 10.1038/s43017-022-00312-w
- Guo Z., Zhou Y. Stagnant slabs and their return flows from finite-frequency tomography of the 410-km and 660-km discontinuities // Journal of Geophysical Research: Solid Earth. 2021. V. 126. e2020JB021099.
- Han R., Li Q., Huang R., Zhang H. Detailed structure of mantle transition zone beneath southeastern China and its implications for thinning of the continental lithosphere // Tectonophysics. 2020. V. 789. 228480. doi: 10.1016/j.tecto.2020.228480
- Hayes G.P., Moore G.L., Portner D.E., Hearne M., Flamme H., Furtney M., Smoczyk G.M. Slab2, a comprehensive subduction zone geometry model // Science. 2018. V. 362. P. 58-61. doi: 10.1126/science.aat4723
- Helffrich G. Topography of the transition zone seismic discontinuities // Rev. Geophys. 2000. V. 38. № 1. P. 141- 158.
- Ishii T., Ohtani E. Dry metastable olivine and slab deformation in a wet subducting slab // Nature Geoscience. 2021. V. 14. P. 526-530. doi: 10.1038/s41561-021-00756-7
- Kennett B.L.N., Engdahl E.R.Traveltimes for global earthquake location and phase identification // Geophys. J.Int. 1991 V. 105. Р. 429-465.
- Liu X., Zhao D. P and S wave tomography of Japan subduction zone from joint inversions of local and teleseismic travel times and surface-wave data // Physics of the Earth and Planetary Interiors. 2016. V. 252. P. 1-22. doi: 10.1016/j.pepi.2016.01.002
- Lloyd A.J., Wiens D.A., Zhu H., Tromp J., Nyblade A.A., Aster R.C. et al. Seismic structure of the Antarctic upper mantle imaged with adjoint tomography // Journal of Geophysical Research: Solid Earth. 2020. V. 125. №. 3. 2019JB017823. doi: 10.1029/2019JB017823
- Mark H.F., Wiens D.A., Ivins E.R., Richter A., Mansour W., Magnani M.B. et al. Lithospheric erosion in the Patagonian slab window, and implications for glacial isostasy // Geophysical Research Letters. 2022. V. 49. e2021GL096863. doi: 10.1029/2021GL096863
- Mishra S., Prajapati S., Teotia S. S. Mantle Transition Zones (MTZ) discontinuities beneath the Andaman Subduction Zone // Journal of Asian Earth Sciences. 2020. doi: 10.1016/j.jseaes.2019.104102
- Ringwood A. E. Phase transformations and their bearing on the constitution and dynamics of the mantle // Geochim. Cosmochim. Acta. 1991. V. 55. Р. 2083-2110.
- Sun M., Yu Y., Gao S., Liu K. Stagnation and tearing of the subducting northwest Pacific slab // Geology. 2022. V. 50. № 6. P. 676-680.
Arquivos suplementares
