Оценка влияния теплотехнических характеристик непроектных бурых углей на их пригодность для сжигания в топке энергетического котла

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Возможность сжигания различных бурых углей (БУ) в топке котла БКЗ-420-140-6 исследовалась с помощью численного моделирования в программе ANSYS Fluent. Для проверки составленной численной модели сжигания твердого топлива предварительно проведена ее валидация, применительно к сжиганию БУ определенного состава путем сравнения результатов расчетов с данными, полученными при режимно-наладочных испытаниях реального котла.

Был разработан способ усреднения характеристик угля и получены зависимости, определяющие состав угля на основании анализа состава 14 типов углей в диапазоне значений низшей теплоты сгорания  QHPот 7.5 до 16 МДж/кг. По полученным зависимостям для 4-х значений  QHP определен теоретический усредненный состав (ТУС) углей. Для одного из ТУС на 10% в большую и меньшую стороны варьировалась влажность.

В качестве показателей эффективности работы топочной камеры котла, приняты температура газов на выходе из топочной камеры, механический недожог и концентрация оксидов азота в дымовых газах. Результаты численного моделирования показывают, что при теплотворной способности топлива QHP 10 МДж/кг механический недожог q4 превышает допустимые нормативы. Наибольшая концентрация оксидов азота на уровне 800–900 мг/нм3 наблюдается для бурых углей с высокой QHP  и наибольшим содержанием углерода. Также показано, что применение прямоточных горелок с организацией ступенчатого сжигания топлива позволяет в 3.25 раза снизить образование оксидов азота в топке по сравнению с исходной схемой сжигания с использованием существующих вихревых горелочных устройств. Влияние низшей теплоты сгорания топлива на температуру газов на выходе из топочной камеры в диапазоне QHP от 11.75 до 16.45 МДж/кг незначительное. Повышение влажности топлива сказывается на температуре газов на выходе из топочной камеры и на механическом недожоге только при значении более примерно 45%. В целом исследования показали, что рассматриваемая топка позволяет сжигать различные бурые угли при изменении физико-химического состава и теплотехнических характеристик в широких пределах.

Полный текст

Доступ закрыт

Об авторах

С. Л. Чернов

Федеральное государственное бюджетное образовательное учреждение высшего образования “Национальный исследовательский университет “МЭИ”

Автор, ответственный за переписку.
Email: ChernovSL@mpei.ru
Россия, Москва

В. Б. Прохоров

Федеральное государственное бюджетное образовательное учреждение высшего образования “Национальный исследовательский университет “МЭИ”

Email: ProkhorovVB@mpei.ru
Россия, Москва

В. Д. Апаров

Федеральное государственное бюджетное образовательное учреждение высшего образования “Национальный исследовательский университет “МЭИ”

Email: AparovVD@mpei.ru
Россия, Москва

А. В. Пай

Федеральное государственное бюджетное образовательное учреждение высшего образования “Национальный исследовательский университет “МЭИ”

Email: PaiAV@mpei.ru
Россия, Москва

Список литературы

  1. Майданик М.Н., Вербовецкий Э.Х., Тугов А.Н. Предварительная оценка возможности перевода котлов тепловых электростанций на сжигание альтернативного угля // Теплоэнергетика. 2021. № 9. С. 33–42.
  2. Осинцев В.В. и др. Анализ результатов опытного сжигания высокореакционного бурого угля на котле БКЗ-210-140Ф // Теплоэнергетика. 2003. № 8. С. 27–31.
  3. Двойнишников В.А., Шумилов Т.И. Организация сжигания канскоачинских углей в паровых котлах энергоблоков 300 МВт Рязанской ГРЭС // Теплоэнергетика. 1998. № 6. С. 2–7.
  4. Al-Abbas A.H., Naser J., Hussein E.K. Numerical simulation of brown coal combustion in a 550 MW tangentially-fired furnace under different operating conditions // Fuel. 2013. V. 107. P. 688–698.
  5. Hashimoto N., Shirai H. Numerical simulation of sub-bituminous coal and bituminous coal mixed combustion employing tabulated-devolatilization-process model // Energy. 2014. V. 71. P. 399–413.
  6. Sheng C. et al. A computational fluid dynamics based study of the combustion characteristics of coal blends in pulverised coal-fired furnace // Fuel. 2004. V. 83. № 11–12. С. 1543–1552.
  7. Su S., Pohl J.H., Holcombe D. Fouling propensities of blended coals in pulverized coal-fired power station boilers // Fuel. 2003. V. 82. № 13. P. 1653–1667.
  8. Ikeda M. et al. Emission characteristics of NOx and unburned carbon in fly ash during combustion of blends of bituminous/sub-bituminous coals // Fuel. 2003. V. 82. № 15–17. P. 1851–1857.
  9. Абрютин А.А., Карасина Э.С., Петросян Р.А. Тепловой расчет котлов. Нормативный метод – СПб.: Изд-во “ВТИ” и НПО “ЦКТИ”, 1998. 258 c.
  10. Prokhorov V.B., Fomenko M.V. and Fomenko N.E. Solid fuel combustion processes modelling in the furnace in terms of the boiler K-50-14-250. The Third Conference “Problems of Thermal Physics and Power Engineering”, Journal of Physics: Conference Series 1683 (2020) 042050.
  11. Chernov S.L., Prokhorov V. B., Pay A.V., Aparov V.D. Assessment of the Slagging Tendency in Power Plant Boiler Furnaces Depending on the Physical-Chemical Characteristics of Ash and Coal // Problems of the Regional Energetics. 2023. Vol. 60. No. 4. pp. 71–85.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Зависимость низшей теплоты сгорания от содержания углерода в БУ.

Скачать (77KB)
3. Рис. 2. Зависимость низшей теплоты сгорания от зольности и влажности в БУ.

Скачать (90KB)
4. Рис. 3. Зависимость низшей теплоты сгорания от выхода летучих в БУ.

Скачать (68KB)
5. Рис. 4. Схема топочной камеры котла БКЗ-420-140-6: а) продольный разрез; б) разрез по А-А; 1-1, 2-2, 3-3, 4-4 – оси расположения вертикальных плоскостей для визуализации.

Скачать (95KB)
6. Рис. 5. Влияние низшей теплоты сгорания БУ на эффективность работы топочной камеры (а) , (б) q4, (в) CNOx.

Скачать (171KB)
7. Рис. 6. Интенсивность роста отложений на стенах топочной камеры с вихревыми горелками с топ- ливом № Б3-10%W р: (а) фронтовая; (б) правая; (в) задняя; (г) левая.

Скачать (88KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».