On a Theorem of Kadets and Pełczyński
- 作者: Astashkin S.V.1
-
隶属关系:
- Samara State University
- 期: 卷 106, 编号 1-2 (2019)
- 页面: 172-182
- 栏目: Article
- URL: https://ogarev-online.ru/0001-4346/article/view/151819
- DOI: https://doi.org/10.1134/S0001434619070216
- ID: 151819
如何引用文章
详细
Necessary and sufficient conditions are found under which a symmetric space X on [0,1] of type 2 has the following property, which was first proved for the spaces Lp, p > 2, by Kadets and Pełczyński: if \(\left\{ {{u_n}} \right\}_{n = 1}^\infty \) is an unconditional basic sequence in X such that
\({\left\| {{u_n}} \right\|_X}\;\asymp\;{\left\| {{u_n}} \right\|_{{L_1}}},\;\;\;\;\;\;\;\;n\; \in \;\mathbb{N},\)![]()
then the norms of the spaces X and L1 are equivalent on the closed linear span [un] in X. For sequences of martingale differences, this implication holds in any symmetric space of type 2.
作者简介
S. Astashkin
Samara State University
编辑信件的主要联系方式.
Email: astash56@mail.ru
俄罗斯联邦, Samara, 443086
补充文件
