On a Theorem of Kadets and Pełczyński


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Necessary and sufficient conditions are found under which a symmetric space X on [0,1] of type 2 has the following property, which was first proved for the spaces Lp, p > 2, by Kadets and Pełczyński: if \(\left\{ {{u_n}} \right\}_{n = 1}^\infty \) is an unconditional basic sequence in X such that

\({\left\| {{u_n}} \right\|_X}\;\asymp\;{\left\| {{u_n}} \right\|_{{L_1}}},\;\;\;\;\;\;\;\;n\; \in \;\mathbb{N},\)

then the norms of the spaces X and L1 are equivalent on the closed linear span [un] in X. For sequences of martingale differences, this implication holds in any symmetric space of type 2.

作者简介

S. Astashkin

Samara State University

编辑信件的主要联系方式.
Email: astash56@mail.ru
俄罗斯联邦, Samara, 443086

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019