On a Theorem of Kadets and Pełczyński


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Necessary and sufficient conditions are found under which a symmetric space X on [0,1] of type 2 has the following property, which was first proved for the spaces Lp, p > 2, by Kadets and Pełczyński: if \(\left\{ {{u_n}} \right\}_{n = 1}^\infty \) is an unconditional basic sequence in X such that

\({\left\| {{u_n}} \right\|_X}\;\asymp\;{\left\| {{u_n}} \right\|_{{L_1}}},\;\;\;\;\;\;\;\;n\; \in \;\mathbb{N},\)

then the norms of the spaces X and L1 are equivalent on the closed linear span [un] in X. For sequences of martingale differences, this implication holds in any symmetric space of type 2.

Авторлар туралы

S. Astashkin

Samara State University

Хат алмасуға жауапты Автор.
Email: astash56@mail.ru
Ресей, Samara, 443086

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019