Limit Properties of Systems of Integer Translates and Functions Generating Tight Gabor Frames
- 作者: Kiselev E.A.1, Minin L.A.1, Novikov I.Y.1
-
隶属关系:
- Voronezh State University
- 期: 卷 106, 编号 1-2 (2019)
- 页面: 71-80
- 栏目: Article
- URL: https://ogarev-online.ru/0001-4346/article/view/151805
- DOI: https://doi.org/10.1134/S0001434619070071
- ID: 151805
如何引用文章
详细
This paper deals with one-parameter families of integer translates of functions. It is shown that, as the scaling multiplier tends to infinity, the nodal interpolation functions converge to the sample function and the ratio of the upper and lower Riesz constants tends to 2. The assertion about convergence in the limit to the sample function is also proved for functions obtained by orthogonalization of the system of translates of the Gauss function and for the tight Gabor window functions as the ratio of the parameters of the time-frequency window tends to infinity.
作者简介
E. Kiselev
Voronezh State University
编辑信件的主要联系方式.
Email: evg-kisel2006@yandex.ru
俄罗斯联邦, Voronezh, 394006
L. Minin
Voronezh State University
编辑信件的主要联系方式.
Email: mininla@mail.ru
俄罗斯联邦, Voronezh, 394006
I. Novikov
Voronezh State University
编辑信件的主要联系方式.
Email: igor.nvkv@gmail.com
俄罗斯联邦, Voronezh, 394006
补充文件
