Limit Properties of Systems of Integer Translates and Functions Generating Tight Gabor Frames
- Авторы: Kiselev E.A.1, Minin L.A.1, Novikov I.Y.1
-
Учреждения:
- Voronezh State University
- Выпуск: Том 106, № 1-2 (2019)
- Страницы: 71-80
- Раздел: Article
- URL: https://ogarev-online.ru/0001-4346/article/view/151805
- DOI: https://doi.org/10.1134/S0001434619070071
- ID: 151805
Цитировать
Аннотация
This paper deals with one-parameter families of integer translates of functions. It is shown that, as the scaling multiplier tends to infinity, the nodal interpolation functions converge to the sample function and the ratio of the upper and lower Riesz constants tends to 2. The assertion about convergence in the limit to the sample function is also proved for functions obtained by orthogonalization of the system of translates of the Gauss function and for the tight Gabor window functions as the ratio of the parameters of the time-frequency window tends to infinity.
Ключевые слова
Об авторах
E. Kiselev
Voronezh State University
Автор, ответственный за переписку.
Email: evg-kisel2006@yandex.ru
Россия, Voronezh, 394006
L. Minin
Voronezh State University
Автор, ответственный за переписку.
Email: mininla@mail.ru
Россия, Voronezh, 394006
I. Novikov
Voronezh State University
Автор, ответственный за переписку.
Email: igor.nvkv@gmail.com
Россия, Voronezh, 394006
Дополнительные файлы
