Bose–Einstein distribution as a problem of analytic number theory: The case of less than two degrees of freedom


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The problem of finding the number and the most likely shape of solutions of the system \(\sum\nolimits_{j = 0}^\infty {{\lambda _j}{n_j}} \leqslant M,\;\sum\nolimits_{j = 1}^\infty {{n_j}} = N\), where λj,M,N > 0 and N is an integer, as M,N →∞, can naturally be interpreted as a problem of analytic number theory. We solve this problem for the case in which the counting function of λj is of the order of λd/2, where d, the number of degrees of freedom, is less than two.

作者简介

V. Maslov

National Research University Higher School of Economics; Ishlinsky Institute for Problems inMechanics

编辑信件的主要联系方式.
Email: v.p.maslov@mail.ru
俄罗斯联邦, Moscow; Moscow

V. Nazaikinskii

Ishlinsky Institute for Problems inMechanics; Moscow Institute of Physics and Technology (State University)

Email: v.p.maslov@mail.ru
俄罗斯联邦, Moscow; Dolgoprudny, Moscow Oblast

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016