Bose–Einstein distribution as a problem of analytic number theory: The case of less than two degrees of freedom


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The problem of finding the number and the most likely shape of solutions of the system \(\sum\nolimits_{j = 0}^\infty {{\lambda _j}{n_j}} \leqslant M,\;\sum\nolimits_{j = 1}^\infty {{n_j}} = N\), where λj,M,N > 0 and N is an integer, as M,N →∞, can naturally be interpreted as a problem of analytic number theory. We solve this problem for the case in which the counting function of λj is of the order of λd/2, where d, the number of degrees of freedom, is less than two.

Авторлар туралы

V. Maslov

National Research University Higher School of Economics; Ishlinsky Institute for Problems inMechanics

Хат алмасуға жауапты Автор.
Email: v.p.maslov@mail.ru
Ресей, Moscow; Moscow

V. Nazaikinskii

Ishlinsky Institute for Problems inMechanics; Moscow Institute of Physics and Technology (State University)

Email: v.p.maslov@mail.ru
Ресей, Moscow; Dolgoprudny, Moscow Oblast

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016