Some Identities Involving the Cesàro Average of the Goldbach Numbers
- Авторлар: Cantarini M.1
-
Мекемелер:
- Department of Mathematics and Computer Science
- Шығарылым: Том 106, № 5-6 (2019)
- Беттер: 688-702
- Бөлім: Article
- URL: https://ogarev-online.ru/0001-4346/article/view/151846
- DOI: https://doi.org/10.1134/S0001434619110038
- ID: 151846
Дәйексөз келтіру
Аннотация
Let Λ(n) be the von Mangoldt function, and let rG(n):= ∑m1+m2=n Λ (m1)Λ(m2) be the weighted sum for the number of Goldbach representations which also includes powers of primes. Let S̃(z): = ∑n≥1 Λ (n)e-nz, where Λ (n) is the Von Mangoldt function, with z ∈ ℂ, Re (z) > 0. In this paper, we prove an explicit formula for S̃(z) and the Cesàro average of rG(n).
Негізгі сөздер
Авторлар туралы
M. Cantarini
Department of Mathematics and Computer Science
Хат алмасуға жауапты Автор.
Email: marco.cantarini@unipg.it
Италия, Perugia, 06123
Қосымша файлдар
