Some Identities Involving the Cesàro Average of the Goldbach Numbers


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let Λ(n) be the von Mangoldt function, and let rG(n):= ∑m1+m2=n Λ (m1)Λ(m2) be the weighted sum for the number of Goldbach representations which also includes powers of primes. Let (z): = ∑n≥1 Λ (n)e-nz, where Λ (n) is the Von Mangoldt function, with z ∈ ℂ, Re (z) > 0. In this paper, we prove an explicit formula for (z) and the Cesàro average of rG(n).

作者简介

M. Cantarini

Department of Mathematics and Computer Science

编辑信件的主要联系方式.
Email: marco.cantarini@unipg.it
意大利, Perugia, 06123

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019