The role of homeostatic proliferation and SNP mutations in MHC genes in the development of rheumatoid arthritis


如何引用文章

全文:

详细

Great efforts have been made to study the etiology and pathogenesis of rheumatoid arthritis in the last few decades, but this issue remains widely unknown. In this review, we suggest a hypothesis according to which the development of rheumatoid arthritis is associated with a genetically determined enhancement of self-antigens presentation and decrease in TCR repertoire diversity due to homeostatic proliferation (HP). We suppose that qualitative changes in the TCR landscape of effector and regulatory T-cells populations lead to immune disequilibrium. I.e. HP results in the condition when self-reactive T-cell clones appear to which no specific T-regulatory cells exist. If such self-reactive clones have TCR specific to modified auto-antigens, which presentation increased due to SNP mutations in MHC genes, then the adaptive immunity is activated, and rheumatoid arthritis develops. Obviously, therapy based on the deletion of self-reactive T-cells clones involved in the RA process or on the replenishment of Treg clones by CAR-T-cells is the perspective approach of personalized medicine.

作者简介

D. Shevyrev

Research Institute for Fundamental and Clinical Immunology

编辑信件的主要联系方式.
Email: dr.daniil25@mail.ru
ORCID iD: 0000-0002-7084-081X
SPIN 代码: 2327-7486

MD, PhD, Junior Research Associate

俄罗斯联邦, Novosibirsk

V. Kozlov

Research Institute for Fundamental and Clinical Immunology

Email: vakoz40@yandex.ru
ORCID iD: 0000-0002-1756-1782
SPIN 代码: 3573-7490

МD, PhD, Academician of the RAS

俄罗斯联邦, Novosibirsk

参考

  1. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388(10055):2023–2038. doi: https://doi.org/10.1016/S0140-6736(16)30173-8
  2. Calabresi E, Petrelli F, Bonifacio AF, et al. One year in review 2018: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 2018;36(2):175–184.
  3. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423(6937):356–361. doi: https://doi.org/10.1038/nature01661
  4. Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 1987;30(11):1205–1213. doi: https://doi.org/10.1002/art.1780301102
  5. Weyand CM, Hicok KC, Conn DL, Goronzy JJ. The influence of HLA-DRB1 genes on disease severity in rheumatoid arthritis. Ann Intern Med. 1992;117(10):801–806. doi: https://doi.org/10.7326/0003-4819-117-10-801
  6. Firestein GS, McInnes IB. Immunopathogenesis of Rheumatoid Arthritis. Immunity. 2017;46(2):183–196. doi: https://doi.org/10.1016/j.immuni.2017.02.006
  7. Ting YT, Petersen J, Ramarathinam SH, et al. The interplay between citrullination and HLA-DRB1 polymorphism in shaping peptide binding hierarchies in rheumatoid arthritis. J Biol Chem. 2018;293(9):3236–3251. doi: https://doi.org/10.1074/jbc.RA117.001013
  8. Okada Y, Kim K, Han B, et al. Risk for ACPA-positive rheumatoid arthritis is driven by shared HLA amino acid polymorphisms in Asian and European populations. Hum Mol Genet. 2014;23(25):6916–6926. doi: https://doi.org/10.1093/hmg/ddu387
  9. Raychaudhuri S, Sandor C, Stahl EA, et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet. 2012;44(3):291–296.doi: https://doi.org/10.1038/ng.1076
  10. van der Helm-van Mil AH, Verpoort KN, Breedveld FC, et al. The HLA-DRB1 shared epitope alleles are primarily a risk factor for anti-cyclic citrullinated peptide antibodies and are not an independent risk factor for development of rheumatoid arthritis. Arthritis Rheum. 2006;54(4):1117–1121. doi: https://doi.org/10.1002/art.21739
  11. Rawlings DJ, Dai X, Buckner JH. The role of PTPN22 risk variant in the development of autoimmunity: finding common ground between mouse and human. J Immunol. 2015;194(7):2977–2984. doi: https://doi.org/10.4049/jimmunol.1403034
  12. Yamamoto K, Okada Y, Suzuki A, Kochi Y. Genetics of rheumatoid arthritis in Asia — present and future. Nat Rev Rheumatol. 2015;11(6):375–379. doi: https://doi.org/10.1038/nrrheum.2015.7
  13. Suzuki A, Yamada R, Chang X, et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet. 2003;34(4):395–402. doi: https://doi.org/10.1038/ng1206
  14. Kaminsky ZA, Tang T, Wang SC, et al. DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet. 2009;41(2):240–245. doi: https://doi.org/10.1038/ng.286
  15. Croia C, Bursi R, Sutera D, et al. One year in review 2019: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 2019;37(3):347–357
  16. Guo Q, Wang Y, Xu D, et al. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6:15. doi: https://doi.org/10.1038/s41413-018-0016-9
  17. van der Woude D, Rantapää-Dahlqvist S, Ioan-Facsinay A, et al. Epitope spreading of the anti-citrullinated protein antibody response occurs before disease onset and is associated with the disease course of early arthritis. Ann Rheum Dis. 2010;69(8):1554–1561. doi: https://doi.org/10.1136/ard.2009.124537
  18. Burmester GR, Dimitriu-Bona A, Waters SJ, Winchester RJ. Identification of three major synovial lining cell populations by monoclonal antibodies directed to Ia antigens and antigens associated with monocytes/macrophages and fibroblasts. Scand J Immunol. 1983;17(1):69–82. doi: https://doi.org/10.1111/j.1365-3083.1983.tb00767.x
  19. Lu MC, Lai NS, Yu HC, et al. Anti-citrullinated protein antibodies bind surface-expressed citrullinated Grp78 on monocyte/macrophages and stimulate tumor necrosis factor alpha production. Arthritis Rheum. 2010;62(5):1213–1223. doi: https://doi.org/10.1002/art.27386
  20. Fukui S, Iwamoto N, Takatani A, et al. M1 and M2 Monocytes in Rheumatoid Arthritis: A Contribution of Imbalance of M1/M2 Monocytes to Osteoclastogenesis. Front Immunol. 2018;8:1958. Published 2018 Jan 8. doi: https://doi.org/10.3389/fimmu.2017.01958
  21. Hueber AJ, Asquith DL, Miller AM, et al. Mast cells express IL-17A in rheumatoid arthritis synovium. J Immunol. 2010;184(7):3336–3340. doi: https://doi.org/10.4049/jimmunol.0903566
  22. Suurmond J, Rivellese F, Dorjée AL, et al. Toll-like receptor triggering augments activation of human mast cells by anti-citrullinated protein antibodies. Ann Rheum Dis. 2015;74(10):1915–1923. doi: https://doi.org/10.1136/annrheumdis-2014-205562
  23. Filer A, Parsonage G, Smith E, et al. Differential survival of leukocyte subsets mediated by synovial, bone marrow, and skin fibroblasts: site-specific versus activation-dependent survival of T cells and neutrophils. Arthritis Rheum. 2006;54(7):2096–2108. doi: https://doi.org/10.1002/art.21930
  24. Aupperle KR, Boyle DL, Hendrix M, et al. Regulation of synoviocyte proliferation, apoptosis, and invasion by the p53 tumor suppressor gene. Am J Pathol. 1998;152(4):1091–1098
  25. Schett G, Redlich K, Xu Q, et al. Enhanced expression of heat shock protein 70 (hsp70) and heat shock factor 1 (HSF1) activation in rheumatoid arthritis synovial tissue. Differential regulation of hsp70 expression and hsf1 activation in synovial fibroblasts by proinflammatory cytokines, shear stress, and antiinflammatory drugs. J Clin Invest. 1998;102(2):302–311. doi: https://doi.org/10.1172/JCI2465
  26. Okamoto K, Nakashima T, Shinohara M, et al. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiol Rev. 2017;97(4):1295–1349. doi: https://doi.org/10.1152/physrev.00036.2016
  27. Pettit AR, Walsh NC, Manning C, Goldring SR, Gravallese EM. RANKL protein is expressed at the pannus-bone interface at sites of articular bone erosion in rheumatoid arthritis. Rheumatology (Oxford). 2006;45(9):1068–1076. doi: https://doi.org/10.1093/rheumatology/kel045
  28. Harre U, Georgess D, Bang H, et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest. 2012;122(5):1791–1802. doi: https://doi.org/10.1172/JCI60975
  29. Turesson C, O’Fallon WM, Crowson CS, et al. Occurrence of extraarticular disease manifestations is associated with excess mortality in a community based cohort of patients with rheumatoid arthritis. J Rheumatol. 2002;29(1):62–67
  30. Cimmino MA, Salvarani C, Macchioni P, et al. Extra-articular manifestations in 587 Italian patients with rheumatoid arthritis. Rheumatol Int. 2000;19(6):213–217. doi: https://doi.org/10.1007/pl00006853
  31. del Rincón ID, Williams K, Stern MP, et al. High incidence of cardiovascular events in a rheumatoid arthritis cohort not explained by traditional cardiac risk factors. Arthritis Rheum. 2001;44(12):2737–2745. doi: https://doi.org/10.1002/1529-0131(200112)44:12<2737::AID-ART460>3.0.CO;2-%23
  32. Young S. Ocular involvement in connective tissue disorders. Curr Allergy Asthma Rep. 2005;5(4):323–326. doi: 10.1007/s11882-005-0076-y
  33. Genta MS, Genta RM, Gabay C. Systemic rheumatoid vasculitis: a review. Semin Arthritis Rheum. 2006;36(2):88–98. doi: https://doi.org/10.1016/j.semarthrit.2006.04.006
  34. Duarte AC, Porter JC, Leandro MJ. The lung in a cohort of rheumatoid arthritis patients-an overview of different types of involvement and treatment. Rheumatology (Oxford). 2019;58(11):2031–2038. doi: https://doi.org/10.1093/rheumatology/kez177
  35. Bowman SJ. Hematological manifestations of rheumatoid arthritis. Scand J Rheumatol. 2002;31(5):251–259. doi: https://doi.org/10.1080/030097402760375124
  36. Agrawal S, Misra R, Aggarwal A. Anemia in rheumatoid arthritis: high prevalence of iron-deficiency anemia in Indian patients. Rheumatol Int. 2006;26(12):1091–1095. doi: https://doi.org/10.1007/s00296-006-0133-4
  37. Wilson A, Yu HT, Goodnough LT, Nissenson AR. Prevalence and outcomes of anemia in rheumatoid arthritis: a systematic review of the literature. Am J Med. 2004;116(Suppl7A):50S–57S. doi: https://doi.org/10.1016/j.amjmed.2003.12.012
  38. Moreland LW, Curtis JR. Systemic nonarticular manifestations of rheumatoid arthritis: focus on inflammatory mechanisms. Semin Arthritis Rheum. 2009;39(2):132–143. doi: https://doi.org/10.1016/j.semarthrit.2008.08.003
  39. Papadaki HA, Kritikos HD, Valatas V, et al. Anemia of chronic disease in rheumatoid arthritis is associated with increased apoptosis of bone marrow erythroid cells: improvement following anti-tumor necrosis factor-alpha antibody therapy. Blood. 2002;100(2):474–482. doi: https://doi.org/10.1182/blood-2002-01-0136
  40. Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004;113(9):1271–1276. doi: https://doi.org/10.1172/JCI20945
  41. Bluestone JA. Mechanisms of tolerance. Immunol Rev. 2011;241(1):5–19. doi: https://doi.org/10.1111/j.1600-065X.2011.01019.x
  42. Krupica T Jr, Fry TJ, Mackall CL. Autoimmunity during lymphopenia: a two-hit model. Clin Immunol. 2006;120(2):121–128. doi: https://doi.org/10.1016/j.clim.2006.04.569
  43. L’Huillier A, Ren G, Shi Y, Zhang J. A two-hit model of autoimmunity: lymphopenia and unresponsiveness to TGF-β signaling. Cell Mol Immunol. 2012;9(5):369–370. doi: https://doi.org/10.1038/cmi.2012.25
  44. Stutman O. Postthymic T-cell development. Immunol Rev. 1986;91:159–194. doi: https://doi.org/10.1111/j.1600-065x.1986.tb01488.x
  45. Gleeson PA, Toh BH, van Driel IR. Organ-specific autoimmunity induced by lymphopenia. Immunol Rev. 1996;149:97–125. doi: https://doi.org/10.1111/j.1600-065x.1996.tb00901.x
  46. King C, Ilic A, Koelsch K, Sarvetnick N. Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell. 2004;117(2):265–277. doi: https://doi.org/10.1016/s0092-8674(04)00335-6
  47. Zhang N, Bevan MJ. TGF-β signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. Nat Immunol. 2012;13(7):667–673. Published 2012 May 27. doi: https://doi.org/10.1038/ni.2319
  48. Li MO, Wan YY, Sanjabi S, et al. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006;24:99–146. doi: https://doi.org/10.1146/annurev.immunol.24.021605.090737
  49. Marie JC, Liggitt D, Rudensky AY. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity. 2006;25(3):441–454. doi: https://doi.org/10.1016/j.immuni.2006.07.012
  50. Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet. 2001;27(1):68–73. doi: https://doi.org/10.1038/83784
  51. Gambineri E, Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheumatol. 2003;15(4):430–435. doi: https://doi.org/10.1097/00002281-200307000-00010
  52. Schulze-Koops H. Lymphopenia and autoimmune diseases. Arthritis Res Ther. 2004;6(4):178–180. doi: https://doi.org/10.1186/ar1208
  53. Symmons DP, Farr M, Salmon M, Bacon PA. Lymphopenia in rheumatoid arthritis. J R Soc Med. 1989;82(8):462–463
  54. Koetz K, Bryl E, Spickschen K, et al. T cell homeostasis in patients with rheumatoid arthritis. Proc Natl Acad Sci USA. 2000;97(16):9203–9208. doi: https://doi.org/10.1073/pnas.97.16.9203
  55. Jones JL, Thompson SA, Loh P, et al. Human autoimmunity after lymphocyte depletion is caused by homeostatic T-cell proliferation. Proc Natl Acad Sci USA. 2013;110(50):20200–20205. doi: https://doi.org/10.1073/pnas.1313654110
  56. Шевырев Д.В., Терещенко В.П., Козлов В.А. Гомеостатическая пролиферация: от нормы к патологии // Российский иммунологический журнал. — 2018. — № 15. — С. 91–105 [Shevyrev DV, Tereshchenko VP, Kozlov VA. Homeostatic proliferation: from health to pathology. Russian Journal of Immunology. 2018;21(4):91–105 (In Russ.)]. doi: https://doi.org/10.7868/S1028722118020016
  57. Shevyrev D, Tereshchenko V, Manova O, Kozlov V. Homeostatic proliferation as a physiological process and a risk factor for autoimmune pathology. AIMS Allergy and Immunology. 2021;5(1):18–32. doi: https://doi.org/10.3934/Allergy.2021002
  58. Шевырев Д.В., Блинова Е.А., Козлов В.А. Влияние гуморальных факторов гомеостатической пролиферации на T-регуляторные клетки in vitro // Бюллетень сибирской медицины. – 2019. – Т. 18. – № 1. – С. 286–293 [Shevyrev DV, Blinova EA, Kozlov VA. The influence of humoral factors of homeostatistic proliferation on T-regulatory cells in vitro. Bulletin of Siberian Medicine. 2019;18(1):286–293. doi: https://doi.org/10.20538/1682-0363-2019-1-286-293
  59. Ge Q, Rao VP, Cho BK, et al. Dependence of lymphopenia-induced T cell proliferation on the abundance of peptide/ MHC epitopes and strength of their interaction with T cell receptors. Proc Natl Acad Sci USA. 2001;98(4):1728–1733. doi: https://doi.org/10.1073/pnas.98.4.1728
  60. Theofilopoulos AN, Dummer W, Kono DH. T cell homeostasis and systemic autoimmunity. J Clin Invest. 2001;108(3):335–340. doi: https://doi.org/10.1172/JCI12173
  61. Kassiotis G, Zamoyska R, Stockinger B. Involvement of avidity for major histocompatibility complex in homeostasis of naive and memory T cells. J Exp Med. 2003;197(8):1007–1016. doi: https://doi.org/10.1084/jem.20021812
  62. Kieper WC, Burghardt JT, Surh CD. A role for TCR affinity in regulating naive T cell homeostasis. J Immunol. 2004;172(1):40–44. doi: https://doi.org/10.4049/jimmunol.172.1.40
  63. Heninger AK, Theil A, Wilhelm C, et al. IL-7 abrogates suppressive activity of human CD4+CD25+FOXP3+ regulatory T cells and allows expansion of alloreactive and autoreactive T cells. J Immunol. 2012;189(12):5649–5658. doi: https://doi.org/10.4049/jimmunol.1201286
  64. Ge Q, Rao VP, Cho BK, et al. Dependence of lymphopenia-induced T cell proliferation on the abundance of peptide/ MHC epitopes and strength of their interaction with T cell receptors. Proc Natl Acad Sci USA. 2001;98(4):1728–1733. doi: https://doi.org/10.1073/pnas.98.4.1728
  65. Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA. IL-2 is essential for TGF-beta to convert naive CD4+CD25-cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol. 2007;178(4):2018–2027. doi: https://doi.org/10.4049/jimmunol.178.4.2018
  66. Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz L. Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity. 2006;25(2):249–259. doi: https://doi.org/10.1016/j.immuni.2006.05.016
  67. Rossetti M, Spreafico R, Consolaro A, et al. TCR repertoire sequencing identifies synovial Treg cell clonotypes in the bloodstream during active inflammation in human arthritis. Ann Rheum Dis. 2017;76(2):435–441. doi: https://doi.org/10.1136/annrheumdis-2015-208992
  68. Britanova OV, Putintseva EV, Shugay M, et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J Immunol. 2014;192(6):2689–2698. doi: https://doi.org/10.4049/jimmunol.1302064
  69. Murray JM, Kaufmann GR, Hodgkin PD, et al. Naive T cells are maintained by thymic output in early ages but by proliferation without phenotypic change after age twenty. Immunol Cell Biol. 2003;81(6):487–495. doi: https://doi.org/10.1046/j.1440-1711.2003.01191.x
  70. Shugay M, Bagaev DV, Zvyagin IV, et al. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Res. 2018;46(D1):D419–D427. doi: https://doi.org/10.1093/nar/gkx760
  71. Oh J, Warshaviak DT, Mkrtichyan M, et al. Single variable domains from the T cell receptor β chain function as mono- and bifunctional CARs and TCRs. Sci Rep. 2019;9(1):17291. doi: https://doi.org/10.1038/s41598-019-53756-4
  72. Migalska M, Sebastian A, Radwan J. Profiling of the TCRβ repertoire in non-model species using high-throughput sequencing. Sci Rep. 2018;8(1):11613. doi: https://doi.org/10.1038/s41598-018-30037-0
  73. Israelson MA, Stepanov AV, Staroverov DB, et al. Testing of monoclonal antibodies against T-cell receptor associated with ankylosing spondylitis. Bulletin of Russian State Medical University. 2018;(5):71–79. doi: https://doi.org/10.24075/brsmu.2018.064

补充文件

附件文件
动作
1. JATS XML

版权所有 © "Paediatrician" Publishers LLC, 2020

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».