Sepsis in newborns (Draft federal guidelines)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Neonatal sepsis is one of the most severe diseases of the neonatal period with a high probability of developing multiple organ dysfunction, septic shock and an unfavorable outcome. The purpose of this publication is to present draft federal clinical guidelines for the treatment of sepsis in newborns, which were developed taking into account the principles of evidence-based medicine. During the preparation of clinical guidelines, key questions were formulated using the PIPOH formula: P (population) — patient population and disease characteristics (neonate with sepsis and septic shock); I (interventions) — intensive care measures; P (professionals) — target audience of clinical recommendations (anesthesiologists, intensive care physicians, neonatologists, pediatricians, surgeons, infectious disease doctors); O (outcomes) — expected outcomes that can be improved (patient outcomes, health system indicators, epidemiological indicators, etc.); H (health care setting) — place of medical care (outpatient clinic, hospital, intensive care unit). The project includes sections on the etiology, pathogenesis and diagnosis of sepsis in newborns. Particular attention is paid to the issues of microbiological diagnostics, identification of the pathogen, antibacterial therapy, respiratory and nutritional support, extracorporeal hemocorrection, the use of intravenous immunoglobulins. It has been demonstrated that one of the mandatory elements of therapy is the early initiation of enteral nutrition using breast milk, the use of which is one of the most effective methods for the prevention of late sepsis in premature newborns with low and extremely low birth weight.

作者简介

Yuri Alexandrovich

Saint Petersburg State Pediatric Medical University

Email: Jalex1963@mail.ru
ORCID iD: 0000-0002-2131-4813
SPIN 代码: 2225-1630

MD, PhD, Dr. Sci. (Medicine), Professor, Head of the Department of Anesthesiology and Intensive Care and Emergency Pediatrics Postgraduate Education Saint Petersburg State Pediatric Medical University

俄罗斯联邦, Saint Petersburg

Ekaterina Balashova

Research Center for Obstetrics, Gynecology and Perinatology

Email: katbal99@gmail.com
ORCID iD: 0000-0002-3741-0770
SPIN 代码: 1335-1489

MD, PhD, Leading Researcher of the NICU named after Professor A.G. Antonov of the Institute of Neonatology and Pediatrics National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Associate Professor of the Department of Neonatology of the Institute of Professional Education National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation

俄罗斯联邦, Moscow

Irina Boronina

Voronezh State Medical University

Email: irinaboronina@bk.ru
ORCID iD: 0000-0003-2266-3297
SPIN 代码: 8900-0990

MD, PhD, Associate Professor, Head Dept of Anesthesiology and Resuscitation, Voronezh State Medical University named after N.N. Burdenko

俄罗斯联邦, Voronezh

Anna Zavyalova

Saint Petersburg State Pediatric Medical University

Email: anzavjalova@mail.ru
ORCID iD: 0000-0002-9532-9698
SPIN 代码: 3817-8267

MD, PhD, Dr. Sci. (Medicine), Professor, Department of Propaedeutics of Children's Diseases with a Course in General Child Care, Saint Petersburg State Pediatric Medical University

俄罗斯联邦, Saint Petersburg

Lyubov Zolotareva

Pirogov Russian National Research Medical University

Email: l_zolotareva@mail.ru
ORCID iD: 0000-0001-7662-8257
SPIN 代码: 4553-0869

MD, PhD, Senior Researcher, Department of Pediatric Reconstructive and Plastic Surgery, Institute of Motherhood and Childhood, Pirogov Russian National Research Medical University

俄罗斯联邦, Moscow

Dmitry Ivanov

Saint Petersburg State Pediatric Medical University

Email: spb@gpma.ru
ORCID iD: 0000-0002-0060-4168
SPIN 代码: 4437-9626

MD, PhD, Dr. Sci. (Medicine), Professor, Head of the Department of Neonatology with Courses in Neurology and Obstetrics-Gynecology Postgraduate Education Rector, Saint Petersburg State Pediatric Medical University

俄罗斯联邦, Saint Petersburg

Oleg Kirilochev

Astrakhan State Medical University

Email: kirilochevoleg@gmail.com
ORCID iD: 0000-0003-2821-7896
SPIN 代码: 5463-3997

MD, PhD, Dr. Sci. (Medicine), Assistant Professor, Head, Department of Anesthesiology and Resuscitation, Astrakhan State Medical University

俄罗斯联邦, Astrakhan

Ivan Lisitsa

Saint Petersburg State Pediatric Medical University

Email: ivan_lisitsa@mail.ru
ORCID iD: 0000-0003-3501-9660
SPIN 代码: 4937-7071

Assistant Professor, Department of General Medical Practice, Saint Petersburg State Pediatric Medical University

俄罗斯联邦, Saint Petersburg

Anastasiya Makulova

Pirogov Russian National Research Medical University; Children’s City Clinical Hospital No. 9 named after G.N. Speransky

Email: mak-ulova@mail.ru
ORCID iD: 0000-0001-9952-3159

MD, PhD, Head of the Center for Neonatal Nephrology and Dialysis, Children's City Clinical Hospital No. 9 named after G.N. Speransky of the Moscow Department of Health; Associate Professor of the Department of Pediatrics named after Academician M.Ya. Studenikin, Faculty of Medicine, Pirogov Russian National Research Medical University

俄罗斯联邦, Moscow; Moscow

Petr Mironov

Bashkortostan State Medical University

Email: mironovpi@mail.ru
ORCID iD: 0000-0002-9016-9461
SPIN 代码: 5617-6616

MD, PhD, Dr. Sci. (Medicine), Professor, of the Department of anesthesiology, Bashkortostan State Medical University

俄罗斯联邦, Ufa

Regina Osokina

Bakoulev Scientific Center for Cardiovascular Surgery

Email: raosokina@bakulev.ru
ORCID iD: 0009-0007-1513-2865
SPIN 代码: 9435-7723

Clinical Pharmacologist A.N. Bakulev National Medical Research Center for Cardiovascular Surgery

俄罗斯联邦, Moscow

Ekaterina Pavlovskaya

Saint Petersburg State Pediatric Medical University

Email: l.pavlovskaya@yandex.ru
ORCID iD: 0000-0001-9960-7141
SPIN 代码: 4308-6025

Assistant Professor, Department of Anaesthesiology, Reanimatology and Emergency Pediatrics, Saint Petersburg State Pediatric Medical University

俄罗斯联邦, Saint Petersburg

Dmitry Popov

Bakoulev Scientific Center for Cardiovascular Surgery

Email: dapopov@bakulev.ru
ORCID iD: 0000-0003-1473-1982
SPIN 代码: 6694-6714

MD, PhD, Dr. Sci. (Medicine), Professor of the Russian Academy of Sciences, Professor of the Department of Anesthesiology and Reanimatology with a Course of clinical Laboratory Diagnostics, head of the Microbiological (bacteriological) laboratory A.N. Bakulev, National Medical Research Center for Cardiovascular Surgery

俄罗斯联邦, Moscow

Konstantin Pshenisnov

Saint Petersburg State Pediatric Medical University

编辑信件的主要联系方式.
Email: Psh_K@mail.ru
ORCID iD: 0000-0003-1113-5296
SPIN 代码: 8423-4294

MD, PhD, Dr. Sci. (Medicine), Professor of Anesthesiology, Intensive Care and Emergency Pediatrics Postgraduate Education, Saint Petersburg State Pediatric Medical University

俄罗斯联邦, 2, Litovskaya st., Saint Petersburg, 194100

Vera Sergeeva

Kursk State Medical University

Email: verasergeeva1973@icloud.com
ORCID iD: 0000-0002-2947-2859

MD, PhD, Dr. Sci. (Medicine), Professor, Department of Anesthesia, Reanimation and Intensive Therapy, Kursk State Medical University

俄罗斯联邦, Kursk

Konstantin Serednyakov

Saint Petersburg State Pediatric Medical University

Email: spbny@yahoo.com
ORCID iD: 0000-0002-2213-0477
SPIN 代码: 1726-6155

MD, PhD, Assistant Professor, Departments of Anesthesiology, Intensive Care and Emergency Pediatrics of the Saint Petersburg State Pediatric Medical University

俄罗斯联邦, Saint Petersburg

Larisa Fedorova

Saint Petersburg State Pediatric Medical University

Email: arslarissa@rambler.ru
ORCID iD: 0000-0001-9747-762X
SPIN 代码: 5474-0902

MD, PhD, Associate Professor, Department of Neonatology with Сourses in Neurology and Obstetrics and Gynecology, Saint Petersburg State Pediatric Medical University

俄罗斯联邦, Saint Petersburg

Anna Agafonova

Saint Petersburg State Pediatric Medical University

Email: anna060bm@yandex.ru
ORCID iD: 0000-0002-2611-3949

Anesthesiology, Intensive Care and Emergency Pediatrics Department Resident Doctor, Saint Petersburg State Pediatric Medical University

俄罗斯联邦, Saint Petersburg

参考

  1. Aleksandrovich YS, Ivanov DO, Pavlovskaya EY, Pshenisnov KV. Predictors of early-onset neonatal infections (review). Pediatrician (Saint Petersburg). 2023;14(6):79–87. EDN: WVGDYB doi: 10.17816/PED626896
  2. Aleksandrovich YuS, Ivanov DO, Pshenisnov KV. Neonatal sepsis. Saint Petersburg: SPSMU; 2018. 176 p. (In Russ.)
  3. Beloborodov VB, Goloschapov OV, Gusarov VG, et al. Guidelines of the Association of Anesthesiologists-Intensivists, the Interregional Non-Governmental Organization Alliance of Clinical Chemotherapists and Microbiologists, the Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC), and NGO Russian Sepsis Forum “Diagnostics and antimicrobial therapy of the infections caused by multiresistant microorganisms” (update 2022). Messenger of anesthesiology and resuscitation. 2022;19(2):84–114. EDN: VJUOGQ doi: 10.21292/2078-5658-2022-19-2-84-114
  4. Homella TL, Eyal FG, Cunningham MD. Neonatology. Moscow: Laboratory of knowledge, 2015. 1572 p. (In Russ.)
  5. Dekhnich АV, Kuzmenkov AYu, Popov DA, et al. Algorithm for the selection of drugs for targeted antimicrobial therapy based on the results of molecular biological studies of positive blood cultures. Messenger of anesthesiology and resuscitation. 2023;20(2):96–107. EDN: ZWEZUV doi: 10.24884/2078-5658-2022-20-2-96-107
  6. Giburt EB. Pediatric transfusiology. Moscow: GEOTAR-Media; 2023. 344 p. (In Russ.)
  7. Ivanov DO, Aleksandrova EM, Arutyunyan TG. Manual of perinatology. In 2 vol. 2nd edit. Ivanov DO, editor. Saint Petersburg: Inform-Navigator; 2019. 2528 p. (In Russ.)
  8. Kryuchko DS, Karpova AL, Prutkin ME, et al. Diagnosis and treatment of shock in newborn children. Clinical recommendations. Moscow: Russian Society of Neonatologists; 2019. (In Russ.)
  9. Lekmanov AU, Mironov PI, Aleksandrovich YuS, et al. Sepsis in children: federal clinical guideline (draft). Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2021;11(2):241–292. EDN: UDVCKO doi: 10.17816/psaic969
  10. Makulova AI, Toporkova AO, Kholodnova NV, et al. Hemoperfusion in a newborn with early neonatal sepsis (clinical case). Neonatology: News, Opinions, Training. 2024;12(4):72–77. doi: 10.33029/2308-2402-2024-12-1-72-77
  11. Mironov PI, Aleksandrovich YuS, Idrisova RG, et al. Determination of indications for the transition to restrictive tactics of infusion therapy in critically ill preterm infants in the early neonatal period. Messenger of anesthesiology and resuscitation. 2024;21(2):39–45. EDN: EVITJK doi: 10.24884/2078-5658-2024-21-2-39-45
  12. Shabalov NP, editor. Neonatology. Moscow: GEOTAR-Media; 2020. 752 p. (In Russ.)
  13. Volodin NN, Degtyarev DN, Kryuchko DS, editors. Neonatology. Clinical recommendations. Moscow: GEOTAR-Media; 2019. (In Russ.)
  14. Volodin NN, Degtyarev DN, editors. Neonatology: a national guideline: in 2 vols. Vol. 2. 2nd ed., revis. suppl. Moscow: GEOTAR-Media; 2023. (In Russ.)
  15. Nikitina IV, Gerasimova AV, Ivanova LA, et al. Health care-associated infections in critically ill premature newborns: epidemiology, clinical features and diagnostics in modern conditions. Neonatology: News, Opinions, Training. 2020;8(3):7–17. EDN: IKCMFJ doi: 10.33029/2308-2402-2020-8-3-7-17
  16. Popov DA, Vostrikova TYu. Rapid syndromic approach to diagnosis of bacteremia — results of the first experience. Clinical Microbiology and Antimicrobial Chemotherapy. 2023;25(3):304–310. EDN: FJQVUT doi: 10.36488/cmac.2023.3.304-310
  17. Popov DA, Vostrikova TYu, Rogova TV, et al. Carriage of antibiotic-resistant bacteria and etiology of postoperative infectious complications in infants with congenital heart defects. Clinical Microbiology and Antimicrobial Chemotherapy. 2022;24(2):139–146. EDN: BNTILR doi: 10.36488/cmac.2022.2.139-146
  18. Popov DA, Nadtochey EA, Vostrikova TYu, Ovseenko ST. Accelerated techniques of pathogen identification from positive blood cultures by MALDI-TOF mass spectrometry. Clinical Microbiology and Antimicrobial Chemotherapy. 2016;18(4):296–307. EDN: XDYONR
  19. Yakovlev SV, Zhuravleva MV, Protsenko DN, et al. Antibiotic stewardship program for inpatient care. Clinical guidelines for Moscow hospitals. Consilium Medicum. 2017;19(7–1):15–51. EDN: ZCQPID
  20. Samsygina GA. Neonatal sepsis. Moscow: GEOTAR-Media; 2020. (In Russ.)
  21. Strokova SO, Nikitina IV, Donnikov AE. Malassesia-associated infections in newborns: prospects of molecular genetic diagnostic methods. Russian Journal of Clinical Dermatology and Venereology. 2023;22(4):392–398. EDN: SSXGXW doi: 10.17116/klinderma202322041392
  22. Sukhorukova MV, Edelstein MV, Skleenova EYu, et al. Antimicrobial resistance of nosocomial Enterobacterales isolates in Russia: results of multicenter epidemiological study “MARATHON 2015–2016”. Clinical Microbiology and Antimicrobial Chemotherapy. 2019;21(2):147–159. EDN: QDARVM doi: 10.36488/cmac.2019.2.147-159
  23. Khaertynov KhS, Anokhin VA, Khaliullina SV, et al. Clinical and epidemiological features and organ dysfunction in newborns with neonatal sepsis. Russian Bulletin of Perinatology and Pediatrics. 2019;64(5): 176–182. EDN: LKMIHK doi: 10.21508/1027-4065-2019-64-5-176-182
  24. Chugunova OL, Ivanov DO, Kozlova EM, et al. Acute renal injury in newborns (clinical practice guidelines project, from April 29, 2019). Neonatology: News, Opinions, Training. 2019;7(2):68–81. EDN: XBMBEV
  25. Sсherbak SG, Vologzhanin DA, Golota AS, et al. Sepsis immunology. University therapeutic journal. 2023;5(4):18–39. doi: 10.56871/UTJ.2023.88.52.002
  26. Bradley JS, Nelson JD, editors. 2024 Nelson’s pediatric antimicrobial therapy. 30th edit. American Academy of Pediatrics, 2024. doi: 10.1542/9781610026970
  27. Al-Matary A, Al Sulaiman M, Al-Otaiby S, et al. Association between the timing of antibiotics administration and outcome of neonatal sepsis. J Infect Public Health. 2022;15(6):643–647. doi: 10.1016/j.jiph.2022.05.004
  28. Altit G, Vigny-Pau M, Barrington K, et al. Corticosteroid therapy in neonatal septic shock-do we prevent death? Am J Perinatol. 2018;35(2):146–151. doi: 10.1055/s-0037-1606188
  29. Anugu NR, Khan S. Comparing the diagnostic accuracy of procalcitonin and c-reactive protein in neonatal sepsis: A systematic review. Cureus. 2021;13(11):e19485. doi: 10.7759/cureus.19485
  30. Askenazi D, Ingram D, White S, et al. Smaller circuits for smaller patients: improving renal support therapy with Aquadex™. Pediatr Nephrol. 2016;31(5):853–860. doi: 10.1007/s00467-015-3259-3
  31. Attia Hussein Mahmoud H, Parekh R, Dhandibhotla S, et al. Insight into neonatal sepsis: An overview. Cureus. 2023;15(9): e45530. doi: 10.7759/cureus.45530
  32. Bai L, Gong P, Jia X, et al. Comparison of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio for the diagnosis of neonatal sepsis: a systematic review and meta-analysis. BMC Pediatr. 2023;23(1):334. doi: 10.1186/s12887-023-04094-y
  33. Bakshi S, Koerner T, Knee A, et al. Effect of fluid bolus on clinical outcomes in very low birth weight infants. J Pediatr Pharmacol Ther. 2020;25(5):437–444. doi: 10.5863/1551-6776-25.5.437
  34. Bancalari A, Muñoz T, Martínez P. Prolonged intravenous immunoglobulin treatment in very low birth weight infants with late onset sepsis. J Neonatal Perinatal Med. 2020;13(3):381–386. doi: 10.3233/NPM-190259
  35. Banigan MA, Keim G, Traynor D, et al. Association of continuous kidney replacement therapy timing and mortality in critically ill children. Pediatr Nephrol. 2024;39(7):2217–2226. doi: 10.1007/s00467-024-06320-w
  36. Baske K, Saini SS, Dutta S, Sundaram V. Epinephrine versus dopamine in neonatal septic shock: a double-blind randomized controlled trial. Eur J Pediatr. 2018;177(9):1335–1342. doi: 10.1007/s00431-018-3195-x
  37. Battista J, De Luca D, Eleni Dit Trolli S, et al. CARPEDIEM® for continuous kidney replacement therapy in neonates and small infants: a French multicenter retrospective study. Pediatr Nephrol. 2023;38(8):2827–2837. doi: 10.1007/s00467-022-05871-0
  38. Beck C, Gallagher K, Taylor LA, et al. Chorioamnionitis and risk for maternal and neonatal sepsis: a systematic review and meta-analysis. Obstet Gynecol. 2021;137(6):1007–1022. doi: 10.1097/AOG.000000000000437
  39. Bedetti L, Lugli L, Marrozzini L, et al. Safety and success of lumbar puncture in young infants: a prospective observational study. Front Pediatr. 2021;9:692652. doi: 10.3389/fped.2021.692652
  40. Bedetti L, Miselli F, Minotti C, et al. Lumbar puncture and meningitis in infants with proven early- or late-onset sepsis: an Italian prospective multicenter observational study. Microorganisms. 2023;11(6):1546. doi: 10.3390/microorganisms11061546
  41. Boscarino G, Romano R, Iotti C, et al. An overview of antibiotic therapy for early- and late-onset neonatal sepsis: current strategies and future prospects. Antibiotics (Basel). 2024;13(3):250. doi: 10.3390/antibiotics13030250
  42. Bottari G, Guzzo I, Marano M, et al. Hemoperfusion with Cytosorb in pediatric patients with septic shock: A retrospective observational study. Int J Artif Organs. 2020;43(9):587–593. doi: 10.1177/0391398820902469
  43. Broersen LHA, Pereira AM, Jørgensen JOL, Dekkers OM. Adrenal Insufficiency in corticosteroids use: systematic review and meta-analysis. J Clin Endocrinol Metab. 2015;100(6):2171–2180. doi: 10.1210/jc.2015-1218
  44. Bundy LM, Rajnik M, Noor A. Neonatal meningitis. StatPearls [Internet]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK532264/
  45. Cai C, Qiu G, Hong W, et al. Clinical effect and safety of continuous renal replacement therapy in the treatment of neonatal sepsis-related acute kidney injury. BMC Nephrol. 2020;21(1):286. doi: 10.1186/s12882-020-01945-z
  46. Celik IH, Hanna M, Canpolat FE, Pammi M. Diagnosis of neonatal sepsis: the past, present and future. Pediatr Res. 2022;91(2):337–350. doi: 10.1038/s41390-021-01696-z
  47. Ceschia G, Parolin M, Longo G, et al. Expanding the spectrum of extracorporeal strategies in small infants with hyperammonemia. Blood Purif. 2023;52(9–10):729–736. doi: 10.1159/000533486
  48. Chaudhry S, Haroon F, Irfan Waheed KA, et al. Blood lactate levels and lactate clearance as predictors of mortality in neonatal sepsis. J Ayub Med Coll Abbottabad. 2022;34(3):438–441. doi: 10.55519/JAMC-03-9087
  49. Chen I-T, Chen C–C, Huang H-C, Kuo K-C. Malassezia furfur emergence and candidemia trends in a neonatal intensive care unit during 10 years: the experience of fluconazole prophylaxis in a single hospital. Adv Neonatal Care. 2020;20(1):E3–E8. doi: 10.1097/ANC.0000000000000640
  50. Chen J, Yasrebinia S, Ghaedi A, et al. Meta-analysis of the role of neutrophil to lymphocyte ratio in neonatal sepsis. BMC Infect Dis. 2023;23(1):837. doi: 10.1186/s12879-023-08800-0
  51. Cheng E, George AA, Bansal SK, et al. Neonatal hypocalcemia: common, uncommon, and rare etiologies. Neoreviews. 2023;24(4): e217–e228. doi: 10.1542/neo.24-4-e217
  52. Chiesa C, Pacifico L, Mancuso G, Panero A. Procalcitonin in pediatrics: overview and challenge. Infection. 1998;26(4):236–241. doi: 10.1007/BF02962371
  53. Chirico V, Lacquaniti A, Tripodi F, et al. Acute kidney injury in neonatal intensive care unit: epidemiology, diagnosis and risk factors. J Clin Med. 2024;13(12):3446. doi: 10.3390/jcm13123446
  54. Conti MG, Angelidou A, Diray-Arce J, et al. Immunometabolic approaches to prevent, detect, and treat neonatal sepsis. Pediatr Res. 2020;87(2):399–405. doi: 10.1038/s41390-019-0647-6
  55. Cookson MW, Kinsella JP. Inhaled nitric oxide in neonatal pulmonary hypertension. Clin Perinatol. 2024;51(1):95–111. doi: 10.1016/j.clp.2023.11.001
  56. Cortese F, Scicchitano P, Gesualdo M, et al. Early and late infections in newborns: where do we stand? a review. Pediatr Neonatol. 2016;57(4):265–273. doi: 10.1016/j.pedneo.2015.09.007
  57. Cortina G, Daverio M, Demirkol D, et al. Continuous renal replacement therapy in neonates and children: what does the pediatrician need to know? An overview from the Critical Care Nephrology Section of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC). Eur J Pediatr. 2024;183(2):529–541. doi: 10.1007/s00431-023-05318-0
  58. Coyne R, Hughes W, Purtill H, et al. influence of an early human milk diet on the duration of parenteral nutrition and incidence of late-onset sepsis in very low birthweight (VLBW) infants: a systematic review. Breastfeed Med. 2024;19(6):425–434. doi: 10.1089/bfm.2023.0290
  59. Crellen T, Turner P, Pol S, et al. Transmission dynamics and control of multidrug-resistant Klebsiella pneumoniae in neonates in a developing country. eLife. 2019;8: e50468. doi: 10.7554/eLife.50468
  60. Curley A, Stanworth SJ, Willoughby K, et al. PlaNeT2 MATISSE Collaborators. Randomized trial of platelet-transfusion thresholds in neonates. N Engl J Med. 2019;380(3):242–251. doi: 10.1056/NEJMoa1807320
  61. Daaboul D, Osman M, Kassem II, et al. Neonatal sepsis due to NDM-1 and VIM-2 co-producing Pseudomonas aeruginosa in Morocco. J Antimicrob Chemother. 2024;79(7):1614–1618. doi: 10.1093/jac/dkae153
  62. Dasgupta S, Jain SK, Aly AM. Neonatal hypotension, the role of hydrocortisone and other pharmacological agents in its management. J Pediatr Child Care. 2016;2(1):08. doi: 10.13188/2380-0534.1000014
  63. Dassios T, Williams EE, Kaltsogianni O, Greenough A. Permissive hypercapnia and oxygenation impairment in premature ventilated infants. Respir Physiol Neurobiol. 2023;317:104144. doi: 10.1016/j.resp.2023.104144
  64. Davis AL, Carcillo JA, Aneja RK, et al. American College of Critical Care Medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit Care Med. 2017;45(6):1061–1093. doi: 10.1097/CCM.0000000000002425
  65. de Sousa JCS, de Carvalho AVD, Monte de Prada LC, et al. Nutritional factors associated with late-onset sepsis in very low birth weight newborns. Nutrients. 2021;14(1):196. doi: 10.3390/nu14010196
  66. de Souza DC, Machado FR. Epidemiology of pediatric septic shock. J PediatrIntensive Care. 2019;8(1):3–10. doi: 10.1055/s-0038-1676634
  67. Deutschman CS, Tracey KJ. Sepsis: current dogma and new perspectives. Immunity. 2014;40(4):463–475. doi: 10.1016/j.immuni.2014.04.001
  68. Dierikx TH, van Kaam AHLC, de Meij TGJ, et al. Umbilical cord blood culture in neonatal early-onset sepsis: a systematic review and meta-analysis. Pediatr Res. 2022;92(2):362–372. doi: 10.1038/s41390-021-01792-0
  69. Dinleyici EC, Frey G, Kola E, et al. Clinical efficacy of IgM-enriched immunoglobulin as adjunctive therapy in neonatal and pediatric sepsis: a systematic review and meta-analysis. Front Pediatr. 2023;11:1239014. doi: 10.3389/fped.2023.1239014
  70. Emeriaud G, López-Fernández YM, Iyer NP, et al. Second pediatric acute lung injury consensus conference (PALICC-2) group on behalf of the pediatric acute lung injury and sepsis investigators (PALISI) network. Executive summary of the Second International Guidelines for the diagnosis and management of pediatric acute respiratory distress syndrome (PALICC-2). Pediatr Crit Care Med. 2023;24(2):143–168. doi: 10.1097/PCC.0000000000003147
  71. Erkol Tuncer GH, Ekim M, Okulu E, et al. Continuous renal replacement therapy in critically ill children: single-center experience. Turk J Med Sci. 2021;51(1):188–194. doi: 10.3906/sag-2006-227
  72. Feng Z, Wu X, Xu X, et al. Efficacy of inhaled nitric oxide in preterm infants ≤34 weeks: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol. 2024;14:1268795. doi: 10.3389/fphar.2023.1268795
  73. Fjalstad JW, Stensvold HJ, Bergseng H, et al. Early-onset sepsis and antibiotic exposure in term infants: a nationwide population-based study in Norway. Pediatr Infect Dis J. 2016;35(1):1–6. doi: 10.1097/INF.0000000000000906
  74. Flannery DD, Chiotos K, Gerber JS, Puopolo KM. Neonatal multidrug-resistant gram-negative infection: epidemiology, mechanisms of resistance, and management. Pediatr Res. 2022;91(2): 380–391. doi: 10.1038/s41390-021-01745-7
  75. Fleischmann C, Reichert F, Cassini A, et al. Global incidence and mortality of neonatal sepsis: a systematic review and meta-analysis. Arch Dis Child. 2021;106(8):745–752. doi: 10.1136/archdischild-2020-320217
  76. Fleiss N, Schwabenbauer K, Randis TM, Polin RA. What’s new in the management of neonatal early-onset sepsis? Arch Dis Child Fetal Neonatal Ed. 2023;108(1):10–14. doi: 10.1136/archdischild-2021-323532
  77. Fleiss N, Shabanova V, Murray TS, et al. The diagnostic utility of obtaining two blood cultures for the diagnosis of early onset sepsis in neonates. J Perinatol. 2024;44(5):745–747. doi: 10.1038/s41372-024-01914-6
  78. Folgori L, Ellis SJ, Bielicki JA, et al. Tackling antimicrobial resistance in neonatal sepsis. Lancet Glob Health. 2017;5(11): e1066–e1068. doi: 10.1016/S2214-109X(17)30362-5
  79. Franco S, Rampersad D, Mesa D, Hammerschlag MR. Treatment options for neonatal infections in the post-cefotaxime era. Expert Rev Anti Infect Ther. 2022;20(10):1253–1259. doi: 10.1080/14787210.2022.2110069
  80. Freedman SB, Roosevelt GE. Utility of anaerobic blood cultures in a pediatric emergency department. Pediatr Emerg Care. 2004;20(7):433–436. doi: 10.1097/01.pec.0000132215.57976.99
  81. Funke A, Berner R, Traichel B, et al. Frequency, natural course, and outcome of neonatal neutropenia. Pediatrics. 2000;106(1):45–51. doi: 10.1542/peds.106.1.45
  82. Gialamprinou D, Kontovazainitis CG, Pouliakis A, et al. Sepsis-induced coagulopathy in preterm neonates with Gram-positive sepsis presents with hypercoagulation and reduced platelet activation compared with healthy preterm neonates. Res Pract Thromb Haemost. 2023;7(2):100100. doi: 10.1016/j.rpth.2023.100100
  83. Glaser MA, Hughes LM, Jnah A, Newberry D. Neonatal sepsis: A review of pathophysiology and current management strategies. Adv Neonatal Care. 2021;21(1):49–60. doi: 10.1097/ANC.0000000000000769
  84. WHO. Guidelines for the prevention and control of carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in health care facilities. Geneva: World Health Organization; 2017.
  85. Hernández G, Ospina-Tascón GA, Damiani LP, et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: The ANDROMEDA-SHOCK randomized clinical trial. JAMA. 2019;321(7):654–664. doi: 10.1001/jama.2019.0071
  86. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862–874. doi: 10.1038/nri3552
  87. Huang D, You C, Mai X, et al. Lung ultrasound-guided fluid resuscitation in neonatal septic shock: A randomized controlled trial. Eur J Pediatr. 2024;183(3):1255–1263. doi: 10.1007/s00431-023-05371-9
  88. Imdad A, Rehman F, Davis E, et al. Effects of neonatal nutrition interventions on neonatal mortality and child health and development outcomes: A systematic review. Campbell Syst Rev. 2021;17(1): e1141. doi: 10.1002/cl2.1141
  89. Jochum F, Moltu SJ, Senterre T, et al. ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Fluid and electrolytes. Clin Nutr. 2018;37(6):2344–2353. doi: 10.1016/j.clnu.2018.06.948
  90. Joynt C, Cheung PY. Treating hypotension in preterm neonates with vasoactive medications. Front Pediatr. 2018;6:86. doi: 10.3389/fped.2018.00086
  91. Kakaraskoska Boceska B, Vilken T, Xavier BB, et al. Assessment of three antibiotic combination regimens against Gram-negative bacteria causing neonatal sepsis in low- and middle-income countries. Nat Commun. 2024;15(1):3947. doi: 10.1038/s41467-024-48296-z
  92. Kasem S, Elhadidi A, Omar N, et al. Microbiological characteristics and resistance patterns in a neonatal intensive care unit: a retrospective surveillance study. Cureus. 2024;16(3):e56027. doi: 10.7759/cureus.56027
  93. Kedarnath M, Alexander EC, Deep A. Safety and efficacy of continuous renal replacement therapy for children less than 10 kg using standard adult machines. Eur J Pediatr. 2023;182(8):3619–3629. doi: 10.1007/s00431-023-05007-y
  94. Kirk AHP, Ong C, Wong JJ, et al. Nutritional intake in children with septic shock: a retrospective single-center study. J Pediatr Intensive Care. 2021;13(1):18–24. doi: 10.1055/s-0041-1736146
  95. Korang SK, Safi S, Nava C, et al. Antibiotic regimens for early-onset neonatal sepsis. Cochrane Database Syst Rev. 2021;5(5): CD013837. doi: 10.1002/14651858.CD013837
  96. Krzyżaniak N, Pawłowska I, Bajorek B. The role of the clinical pharmacist in the NICU: a cross-sectional survey of Australian and Polish pharmacy practice. Eur J Hosp Pharm. 2018;25(e1):e7–e16. doi: 10.1136/ejhpharm-2017-001432
  97. Kumar KR, Shah SJ, Fayyad RM, et al. Association between hypoglycemia and the occurrence of early onset sepsis in premature infants. J Pediatric Infect Dis Soc. 2023;12(S-2):S28–S36. doi: 10.1093/jpids/piad067
  98. Kumar P, Denson SE, Mancuso TJ, et al. Premedication for nonemergency endotracheal intubation in the neonate. Pediatrics. 2010;125(3):608–615. doi: 10.1542/peds.2009-2863
  99. Kuzniewicz MW, Puopolo KM, Fischer A, et al. A quantitative, risk-based approach to the management of neonatal early-onset sepsis. JAMA Pediatr. 2017;171(4):365–371. doi: 10.1001/jamapediatrics.2016.4678
  100. Lee YQ, Ahmad Kamar A, Velayuthan RD, et al. Clonal relatedness in the acquisition of intestinal carriage and transmission of multidrug resistant (MDR) Klebsiella pneumoniae and Escherichia coli and its risk factors among preterm infants admitted to the neonatal intensive care unit (NICU). Pediatr Neonatol. 2021;62(2):129–137. doi: 10.1016/j.pedneo.2020.10.002
  101. Li G, Bielicki JA, Ahmed ASMNU, et al. Towards understanding global patterns of antimicrobial use and resistance in neonatal sepsis: insights from the NeoAMR network. Arch Dis Child. 2020;105(1):26–31. doi: 10.1136/archdischild-2019-316816
  102. Liu Y, Chai Y, Rong Z, Chen Y. Prognostic value of ionized calcium levels in neonatal sepsis. Ann Nutr Metab. 2020;76(3):193–200. doi: 10.1159/000508685
  103. Ma H, Xu JW, Zhang YH, et al. Relevance and antimicrobial resistance profile of Klebsiella pneumoniae in neonatal sepsis. J Matern Fetal Neonatal Med. 2024;37(1):2327828. doi: 10.1080/14767058.2024.2327828
  104. Manurung TN, Wungu CD, Utomo MT. The role of breast milk on reducing the risk of neonatal sepsis in preterm and low birth weight infants: a systematic review and meta-analysis. Pharmacogn J. 2022;14(6s):1067–1074. doi: 10.5530/pj.2022.14.211
  105. Marks L, de Waal K, Ferguson JK. Time to positive blood culture in early onset neonatal sepsis: A retrospective clinical study and review of the literature. J Paediatr Child Health. 2020;56(9):1371–1375. doi: 10.1111/jpc.14934
  106. Mathias S, Balachander B, Bosco A, et al. The effect of exchange transfusion on mortality in neonatal sepsis: a meta-analysis. Eur J Pediatr. 2022;181(1):369–381. doi: 10.1007/s00431-021-04194-w
  107. Matsushita FY, Krebs VLJ, de Carvalho WB. Association between fluid overload and mortality in newborns: a systematic review and meta-analysis. Pediatr Nephrol. 2022;37(5):983–992. doi: 10.1007/s00467-021-05281-8
  108. McGovern M, Giannoni E, Kuester H, et al. Challenges in developing a consensus definition of neonatal sepsis. Pediatr Res. 2020;88(1):14–26. doi: 10.1038/s41390-020-0785-x
  109. Meena R, Meena KK, Athwani V, et al. Umbilical cord blood culture in diagnosis of early onset neonatal sepsis. Indian J Pediatr. 2020;87(10):793–797. doi: 10.1007/s12098-020-03345-5
  110. Mehta NM, Skillman HE, Irving SY, et al. Guidelines for the provision and assessment of nutrition support therapy in the pediatric critically ill patient: society of critical care medicine and American society for parenteral and enteral nutrition. JPEN J Parenter Enteral Nutr. 2017;41(5):706–742. doi: 10.1177/0148607117711387
  111. Menon K, Schlapbach LJ, Akech S, et al. Pediatric sepsis definition — a systematic review protocol by the pediatric sepsis definition taskforce. Crit Care Explor. 2020;2(6):e0123. doi: 10.1097/CCE.0000000000000123
  112. Milas G-P, Karageorgiou V, Bellos I. Mean platelet volume and neonatal sepsis: a systematic review and meta-analysis of diagnostic accuracy. J Matern Fetal Neonatal Med. 2022;35(25):5324–5336. doi: 10.1080/14767058.2021.1879039
  113. Miller JM, Binnicker MJ, Campbell S, et al. Guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2024 update by the infectious diseases society of America (IDSA) and the American society for microbiology (ASM). Clin Infect Dis. 2024; ciae104. doi: 10.1093/cid/ciae104
  114. Minotti C, Di Caprio A, Facchini L, et al. Antimicrobial resistance pattern and empirical antibiotic treatments in neonatal sepsis: A retrospective, single-center, 12-year study. Antibiotics (Basel). 2023;12(10):1488. doi: 10.3390/antibiotics12101488
  115. Moliner-Calderón E, Verd S, Leiva A, et al. The role of human milk feeds on inotrope use in newborn infants with sepsis. Front Pediatr. 2023;11:1172799. doi: 10.3389/fped.2023.1172799
  116. Moltu SJ, Bronsky J, Embleton N, et al. Nutritional management of the critically ill neonate. J Pediatr Gastroenterol Nutr. 2021;73(2):274–289. doi: 10.1097/MPG.0000000000003076
  117. Moss CR. Fluid and electrolyte management in the neonate: potassium and phosphorus. Neonatal Netw. 2022;41(4):211–218. doi: 10.1891/NN-2021-0021
  118. Moss CR. Fluid and electrolyte management in the neonate: sodium and chloride. Neonatal Netw. 2022;41(3):137–144. doi: 10.1891/11-T-759
  119. Mouzinho A, Rosenfeld CR, Sánchez PJ, Risser R. Revised reference ranges for circulating neutrophils in very-low-birth-weight neonates. Pediatrics. 1994;94(1):76–82.
  120. Munro MJ, Walker AM, Barfield CP. Hypotensive extremely low birth weight infants have reduced cerebral blood flow. Pediatrics. 2004;114(6):1591–1596. doi: 10.1542/peds.2004-1073
  121. Nassir KF, Al-Saddi YI, Abbas HM, et al. Pentaglobin (immunoglobulin M-enriched immunoglobulin) as adjuvant therapy for premature and very low-birth-weight neonates with sepsis. Indian J Pharmacol. 2021;53(5):364–370. doi: 10.4103/ijp.ijp_881_20
  122. Neches SK, DeMartino C, Shay R. Pharmacologic adjuncts for neonatal tracheal intubation: The evidence behind premedication. Neoreviews. 2023;24(12):e783–e796. doi: 10.1542/neo.24-12-e783
  123. Nellis ME, Karam O, Valentine SL, et al. Executive summary of recommendations and expert consensus for plasma and platelet transfusion practice in critically ill children: from the transfusion and anemia expertise initiative-control/avoidance of bleeding (TAXI-CAB). Pediatr Crit Care Med. 2022;23(1):34–51. doi: 10.1097/PCC.0000000000002851
  124. Newman TB, Puopolo KM, Wi S, et al. Interpreting complete blood counts soon after birth in newborns at risk for sepsis. Pediatrics. 2010;126(5):903–909. doi: 10.1542/peds.2010-0935
  125. Nguyen HB, Jaehne AK, Jayaprakash N, et al. Early goal-directed therapy in severe sepsis and septic shock: insights and comparisons to ProCESS, ProMISe, and ARISE. Crit Care. 2016;20(1):160. doi: 10.1186/s13054-016-1288-3
  126. Ni B, Qin M, Zhao J, Guo Q. A glance at transient hyperammonemia of the newborn: Pathophysiology, diagnosis, and treatment: A review. Medicine (Baltimore). 2022;101(48): e31796. doi: 10.1097/MD.0000000000031796
  127. NICE. Suspected sepsis: recognition, diagnosis and early management. London: National Institute for Health and Care Excellence (NICE); 2024.
  128. Nishizaki N, Hara T, Obinata K, et al. Clinical effects and outcomes after polymyxin b-immobilized fiber column direct hemoperfusion treatment for septic shock in preterm neonates. Pediatr Crit Care Med. 2020;21(2):156–163. doi: 10.1097/PCC.0000000000002132
  129. Nishizaki N, Shima T, Watanabe A, et al. Unsatisfactory short-term neurodevelopmental outcomes of preterm infants who received polymyxin b-immobilized fiber column-direct hemoperfusion for septic shock. Tohoku J Exp Med. 2021;253(4):275–281. doi: 10.1620/tjem.253.275
  130. O’Reilly HD, Menon K. Sepsis in paediatrics. BJA Educ. 2021;21(2):51–58. doi: 10.1016/j.bjae.2020.09.004
  131. Ortiz-Reyes L, Patel JJ, Jiang X, et al. Early versus delayed enteral nutrition in mechanically ventilated patients with circulatory shock: a nested cohort analysis of an international multicenter, pragmatic clinical trial. Crit Care. 2022;26(1):192. doi: 10.1186/s13054-022-04067-0
  132. Ozawa Y, Miyake F, Isayama T. Efficacy and safety of permissive hypercapnia in preterm infants: A systematic review. Pediatr Pulmonol. 2022;57(11):2603–2613. doi: 10.1002/ppul.26108
  133. Pacifici GM. Clinical pharmacology of tigecycline in children. Ann Clin Pharmacol Toxicol. 2021;2(2):33–38.
  134. Pacifici GM. clinical pharmacology of caspofungin in infants and children. J Clin Pharmacol Ther. 2020;1(1):23–31.
  135. Pan B, Sun P, Pei R, et al. Efficacy of IVIG therapy for patients with sepsis: a systematic review and meta-analysis. J Transl Med. 2023;21(1):765. doi: 10.1186/s12967-023-04592-8
  136. Pana ZD, Roilides E, Warris A, et al. Epidemiology of invasive fungal disease in children. J Pediatric Infect Dis Soc. 2017;6(S1): S3–S11. doi: 10.1093/jpids/pix046
  137. Parvathi KSL, Soma SK, Thanda P. Incidence of glucose level abnormalities in neonatal sepsis and its association with mortality. Int J Contemp Pediatr. 2020;7(12):2280–2284. doi: 10.18203/2349-3291.ijcp20205005
  138. Patel JJ, Lopez-Delgado JC, Stoppe C, McClave SA. Enteral nutrition in septic shock: a call for a paradigm shift. Curr Opin Crit Care. 2024;30(2):165–171. doi: 10.1097/MCC.0000000000001134
  139. Peruzzi L, Bonaudo R, Amore A, et al. Neonatal sepsis with multi-organ failure and treated with a new dialysis device specifically designed for newborns. Case Rep Nephrol Urol. 2014;4(2):113–119. doi: 10.1159/000363691
  140. Poggi C, Dani C. New antimicrobials for the treatment of neonatal sepsis caused by multi-drug-resistant bacteria: A systematic review. Antibiotics (Basel). 2023;12(6):956. doi: 10.3390/antibiotics12060956
  141. Poggi C, Lucenteforte E, Petri D, et al. Presepsin for the diagnosis of neonatal early-onset sepsis: a systematic review and meta-analysis. JAMA Pediatr. 2022;176(8):750–758. doi: 10.1001/jamapediatrics.2022.1647
  142. Pugnaloni F, De Rose DU, Kipfmueller F, et al. Assessment of hemodynamic dysfunction in septic newborns by functional echocardiography: a systematic review. Pediatr Res. 2024;95(6):1422–1431. doi: 10.1038/s41390-024-03045-2
  143. Que C, Chen H, Qiu H, Zhong H. Analysis of differences in neonatal sepsis caused by Streptococcus agalactiae and Escherichia coli. Clin Lab. 2024;70(7):231233. doi: 10.7754/Clin.Lab.2024.231233
  144. Rallis D, Giapros V, Serbis A, et al. Fighting antimicrobial resistance in neonatal intensive care units: rational use of antibiotics in neonatal sepsis. Antibiotics (Basel). 2023;12(3):508. doi: 10.3390/antibiotics12030508
  145. Rees CA, Lim J, Westbrook AL, et al. Systematic review and meta-analysis of the diagnostic value of four biomarkers in detecting neonatal sepsis in low- and middle-income countries. BMJ Paediatr Open. 2023;7(1):e001627. doi: 10.1136/bmjpo-2022-001627
  146. Rey S, Kulabukhov VM, Popov A, et al. Hemoperfusion using the LPS-selective mesoporous polymeric adsorbent in septic shock: a multicenter randomized clinical trial. Shock. 2023;60(1):155. doi: 10.1097/SHK.0000000000002194
  147. Ribeiro HS, Assunção A, Vieira RJ, et al. Platelet transfusions in preterm infants: current concepts and controversies-a systematic review and meta-analysis. Eur J Pediatr. 2023;182(8):3433–3443. doi: 10.1007/s00431-023-05031-y
  148. Roseff SD, Luban NL, Manno CS. Guidelines for assessing appropriateness of pediatric transfusion. Transfusion. 2002;42(11): 1398–413. doi: 10.1046/j.1537-2995.2002.00208.x
  149. Russell MJ, Kanthimathinathan HK. Is there an optimum duration of fluid bolus in pediatric septic shock? A critical appraisal of “fluid bolus over 15–20 versus 5–10 minutes each in the first hour of resuscitation in children with septic shock: a randomized controlled trial” by Sankar et al. (Pediatr Crit Care Med 2017;18:e435-e445). Pediatr Crit Care Med. 2018;19(4):369–371. doi: 10.1097/PCC.0000000000001459
  150. Russell NJ, Stöhr W, Plakkal N, et al. Patterns of antibiotic use, pathogens, and prediction of mortality in hospitalized neonates and young infants with sepsis: A global neonatal sepsis observational cohort study (NeoOBS). PLoS Med. 2023;20(6):e1004179. doi: 10.1371/journal.pmed.1004179
  151. Sáez-Llorens X, Macias M, Maiya P, et al. Pharmacokinetics and safety of caspofungin in neonates and infants less than 3 months of age. Antimicrob Agents Chemother. 2009;53(3):869–875. doi: 10.1128/AAC.00868–08
  152. Sakai AM, Iensue TNAN, Pereira KO, et al. Colonization by multidrug-resistant microorganisms of hospitalized newborns and their mothers in the neonatal unit context. J Infect Dev Ctries. 2020;14(7):765–771. doi: 10.3855/jidc.12091
  153. Sands K, Spiller OB, Thomson K, et al. Early-onset neonatal sepsis in low- and middle-income countries: current challenges and future opportunities. Infect Drug Resist. 2022;15:933–946. doi: 10.2147/IDR.S294156
  154. Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016;2016:2475067. doi: 10.1155/2016/2475067
  155. Schelonka RL, Chai MK, Yoder BA, et al. Volume of blood required to detect common neonatal pathogens. J Pediatr. 1996;129(2):275–278. doi: 10.1016/s0022-3476(96)70254-8
  156. Schlapbach LJ, Kissoon N. Defining pediatric sepsis. JAMA Pediatr. 2018;172(4):312–314. doi: 10.1001/jamapediatrics.2017.5208
  157. Schmatz M, Srinivasan L, Grundmeier RW, et al. Surviving sepsis in a referral neonatal intensive care unit: association between time to antibiotic administration and in-hospital outcomes. J Pediatr. 2020;217:59–65.e1. doi: 10.1016/j.jpeds.2019.08.023
  158. Schulman J, Dimand RJ, Lee HC, et al. Neonatal intensive care unit antibiotic use. Pediatrics. 2015;135(5):826–833. doi: 10.1542/peds.2014-3409
  159. Segar JL, Jetton JG. Fluid and electrolyte management in the neonate and what can go wrong. Curr Opin Pediatr. 2024;36(2): 198–203. doi: 10.1097/MOP.0000000000001308
  160. Segar JL. A physiological approach to fluid and electrolyte management of the preterm infant: Review. J Neonatal Perinatal Med. 2020;13(1):11–19. doi: 10.3233/NPM-190309
  161. Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):762–774. doi: 10.1001/jama.2016.0288
  162. Seyoum K, Sahiledengle B, Kene C, et al. Determinants of neonatal sepsis among neonates admitted to neonatal intensive care units in Ethiopian hospitals: A systematic review and meta-analysis. Heliyon. 2023;9(9):e20336. doi: 10.1016/j.heliyon.2023.e20336
  163. Shankar-Hari M, Phillips GS, Levy ML, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):775–787. doi: 10.1001/jama.2016.0289
  164. Schulzke SM, Stoecklin B. Update on ventilatory management of extremely preterm infants-a neonatal intensive care unit perspective. Paediatr Anaesth. 2022;32(2):363–371. doi: 10.1111/pan.14369
  165. Singer M, De Santis V, Vitale D, Jeffcoate W. Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet. 2004;364(9433):545–548. doi: 10.1016/S0140-6736(04)16815-3
  166. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287
  167. Steadman E, Raisch DW, Bennett CL, et al. Evaluation of a potential clinical interaction between ceftriaxone and calcium. Antimicrob Agents Chemother. 2010;54(4):1534–1540. doi: 10.1128/AAC.01111-09
  168. Sturrock S, Sadoo S, Nanyunja C, Le Doare K. Improving the treatment of neonatal sepsis in resource-limited settings: gaps and recommendations. Res Rep Trop Med. 2023;14:121–134. doi: 10.2147/RRTM.S410785
  169. Sudo Y, Seki-Nagasawa J, Kajikawa D, et al. Effect of fentanyl for preterm infants on mechanical ventilation: a systematic review and meta-analysis. Neonatology. 2023;120(3):287–294. doi: 10.1159/000529440
  170. Sundararajan S. Ideal blood inoculant volume for neonatal sepsis evaluation: an alternative approach. Pediatr Res. 2021;90(5):9 30–933. doi: 10.1038/s41390-021-01720-2
  171. Sweet DG, Carnielli VP, Greisen G, et al. European consensus guidelines on the management of respiratory distress syndrome: 2022 update. Neonatology. 2023;120(1):3–23. doi: 10.1159/000528914
  172. Tan B, Wong JJ, Sultana R, et al. Global case-fatality rates in pediatric severe sepsis and septic shock: a systematic review and meta-analysis. JAMA Pediatr. 2019;173(4):401. doi: 10.1001/jamapediatrics.2019.0488
  173. Ting JY, Autmizguine J, Dunn MS, et al. Practice summary of antimicrobial therapy for commonly encountered conditions in the neonatal intensive care unit: a Canadian perspective. Front Pediatr. 2022;10:894005. doi: 10.3389/fped.2022.894005
  174. Tokumasu H, Watabe S, Tokumasu S. Effect of hemodiafiltration therapy in a low-birthweight infant with congenital sepsis. Pediatr Int. 2016;58(3):237–240. doi: 10.1111/ped.12776
  175. Tolia VN, Bahr TM, Bennett MM, et al. The association of hydrocortisone dosage on mortality in infants born extremely premature. J Pediatr. 2019;207:143–147.e3. doi: 10.1016/j.jpeds.2018.11.023
  176. Tume LN, Arch B, Woolfall K, et al. Gastric residual volume measurement in U.K. PICUs: A survey of practice. Pediatr Crit Care Med. 2019;20(8):707–713. doi: 10.1097/PCC.0000000000001944
  177. Valentine SL, Cholette JM, Goobie SM. Transfusion strategies for hemostatic blood products in critically ill children: a narrative review and update on expert consensus guidelines. Anesth Analg. 2022;135(3):545–557. doi: 10.1213/ANE.0000000000006149
  178. van Leeuwen LM, Fourie E, van den Brink G, et al. Diagnostic value of maternal, cord blood and neonatal biomarkers for early-onset sepsis: a systematic review and meta-analysis. Clin Microbiol Infect. 2024;30(7):850–857. doi: 10.1016/j.cmi.2024.03.005
  179. Walsh BK. Inhaled pulmonary vasodilators in the neonatal and pediatric ICU. Respir Care. 2020;65(10):1611–1623. doi: 10.4187/respcare.08265
  180. Wang J, Wang Z, Zhang M, et al. Diagnostic value of mean platelet volume for neonatal sepsis: A systematic review and meta-analysis. Medicine (Baltimore). 2020;99(32):e21649. doi: 10.1097/MD.0000000000021649
  181. Wang Y-S, Shen W, Yang Q, et al. Analysis of risk factors for parenteral nutrition-associated cholestasis in preterm infants: a multicenter observational study. BMC Pediatr. 2023;23(1):250. doi: 10.1186/s12887-023-04068-0
  182. Weinberg G, D, Angio C. Laboratory aids for diagnosis of neonatal sepsis. In: Wilson C, Nizet V, Maldonado Y, et al. editors. Infectious disease of the fetus and newborn infant. 8th edit. 2015. P. 1132–1146.
  183. Weiss SL, Fitzgerald JC, Pappachan J, et al. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med. 2016;193(2):223–224. doi: 10.1164/rccm.1932erratum
  184. Weiss SL, Peters MJ, Alhazzani W, et al. Executive summary: surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Pediatr Crit Care Med. 2020;21(2):186–195. doi: 10.1097/PCC.0000000000002197
  185. Wen L, Xu L. The efficacy of dopamine versus epinephrine for pediatric or neonatal septic shock: a meta-analysis of randomized controlled studies. Ital J Pediatr. 2020;46(1):6. doi: 10.1186/s13052-019-0768-x
  186. Wen SCH, Ezure Y, Rolley L, et al. Gram-negative neonatal sepsis in low- and lower-middle-income countries and WHO empirical antibiotic recommendations: A systematic review and meta-analysis. PLoS Med. 2021;18(9):e1003787. doi: 10.1371/journal.pmed.1003787
  187. Wiechers C, Bernhard W, Goelz R, et al. Optimizing early neonatal nutrition and dietary pattern in premature infants. Int J Environ Res Public Health. 2021;18(14):7544. doi: 10.3390/ijerph18147544
  188. Wiersinga WJ, Leopold SJ, Cranendonk DR, van der Poll T. Host innate immune responses to sepsis. Virulence. 2014;5(1):36–44. doi: 10.4161/viru.25436
  189. Woodford EC, Dhudasia MB, Puopolo KM, et al. Neonatal blood culture inoculant volume: feasibility and challenges. Pediatr Res. 2021;90(5):1086–1092. doi: 10.1038/s41390-021-01484-9
  190. Workneh Bitew Z, Worku T, Alemu A. Effects of vitamin D on neonatal sepsis: A systematic review and meta-analysis. Food Sci Nutr. 2020;9(1):375–388. doi: 10.1002/fsn3.2003
  191. Wynn JL, Kelly MS, Benjamin DK, et al. Timing of multiorgan dysfunction among hospitalized infants with fatal fulminant sepsis. Am J Perinatol. 2017;34(7):633–639. doi: 10.1055/s-0036-1597130
  192. Wynn JL, Polin RA. A neonatal sequential organ failure assessment score predicts mortality to late-onset sepsis in preterm very low birth weight infants. Pediatr Res. 2020;88(1):85–90. doi: 10.1038/s41390-019-0517-2
  193. Wynn JL, Polin RA. Progress in the management of neonatal sepsis: the importance of a consensus definition. Pediatr Res. 2018;83(1–1):13–15. doi: 10.1038/pr.2017.224
  194. Xin Y, Shao Y, Mu W, et al. Accuracy of the neutrophil-to-lymphocyte ratio for the diagnosis of neonatal sepsis: a systematic review and meta-analysis. BMJ Open. 2022;12(12):e060391. doi: 10.1136/bmjopen-2021-060391
  195. Xu J, Fang L, Chen J, et al. Real-life effects, complications, and outcomes in 39 critically ill neonates receiving continuous kidney replacement therapy. Pediatr Nephrol. 2023;38(9):3145–3152. doi: 10.1007/s00467-023-05944-8
  196. Xu J, Sun Y, Zhang W, et al. The efficacy and safety of continuous blood purification in neonates with septic shock and acute kidney injury: a two-center retrospective study. Eur J Pediatr. 2024;183(2):689–696. doi: 10.1007/s00431-023-05336-y
  197. Yalçın N, Kaşıkcı M, Çelik HT, et al. Impact of clinical pharmacist-led intervention for drug-related problems in neonatal intensive care unit a randomized controlled trial. Front Pharmacol. 2023;14:1242779. doi: 10.3389/fphar.2023.1242779
  198. Yang L-F, Ding J-C, Zhu L-P, et al. Continuous renal replacement therapy rescued life-threatening capillary leak syndrome in an extremely-low-birth-weight premature: a case report. Ital J Pediatr. 2021;47(1):116. doi: 10.1186/s13052-021-01067-8
  199. Yilmaz A, Kaya N, Gonen I, et al. Evaluating of neonatal early onset sepsis through lactate and base excess monitoring. Sci Rep. 2023;13(1):14837. doi: 10.1038/s41598-023-41776-0
  200. Zelellw DA, Dessie G, Worku Mengesha E, et al. A systemic review and meta-analysis of the leading pathogens causing neonatal sepsis in developing countries. Biomed Res Int. 2021;2021:6626983. doi: 10.1155/2021/6626983

补充文件

附件文件
动作
1. JATS XML
2. Figure. Tactical decision-making algorithm

下载 (176KB)

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».