Expression of TSPO and HIF-1α genes as predictors of the organism’s resistance to hyperthermia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: One of the key transcriptional regulators that determine the body’s resistance to hypoxia is the hypoxia-inducible factor HIF-1α, the study of the role of which in the body’s resistance to extreme influences can justify new directions in medical technologies for its increase. The body’s resistance to hypoxia largely determines the resistance to other critically significant influences (hyperthermia, hypothermia, hyperbaria, ionizing radiation, chemicals, etc.). However, it was not possible to find a quantitative assessment of this effect in the literature studied by us, which served as the basis for this study.

AIM: To assess the role of the level of expression of the hypoxia-inducible factor HIF-1α in various tissues of laboratory animals in increasing the resistance of animals to the effects of extreme hyperthermia.

MATERIALS AND METHODS: The study was carried out on outbred white laboratory rats obtained from the Rappolovo nursery weighing 180–220 g. For the study, preliminary laboratory animals were tested for an individual level of resistance to hyperthermia (40 animals), which made it possible to form experimental groups from highly resistant and low resistant to extreme animal influences. The definition of resistance to hyperthermia was carried out by the rate of increase in rectal temperature in animals during 20-minute air hyperthermia (40°C). 4 groups of laboratory animals were formed (2 each with high and low resistance), half of which were exposed to a pronounced adverse effect of hyperthermia. Biological material was taken from all animals (whole blood, plasma, tissues of the heart, liver, kidneys, brain), in which the expression of the HIF-1α and TSPO genes (housekeeping gene) was determined by the Real-Time-PCR method. Statistical processing of the obtained data was carried out using the ANOVA analysis of variance.

RESULTS: It has been established that the level of resistance of animals to hyperthermia is largely determined by their genetic characteristics. Even under thermocomfort conditions, the expression of the TSPO “housekeeping” gene in animals with a high level of resistance to hyperthermia differed with a high degree of reliability from low-resistant animals (in the kidneys, liver, and brain, on average, by 40–60%; in the heart, by 25%). The expression values of this gene, determined in whole blood or plasma, make it possible to differentiate groups of animals according to the level of resistance to hyperthermia. A similar relationship between animals with high and low resistance is also observed in tissues obtained immediately after thermal exposure.

CONCLUSIONS: The main organ that provides a high level of resistance to both hypoxia and hyperthermia associated with the basic (under thermal comfort conditions) expression of HIF-1α is the brain. The expression of the hypoxia-inducible factor in it is more than 300 times higher than the expression of the “housekeeping” genes. The second most important organ is the liver, in which HIF-1α expression activity is more than 15 times higher than the expression of “housekeeping” genes. Under conditions of hyperthermia, low-resistant animals show a compensatory-adaptive reaction associated with the activation of hypoxic defense mechanisms in blood cells, kidneys, and liver, in the absence of such a reaction in the tissues of the heart and brain. Animals highly resistant to hyperthermia were characterized by a significant (30 times) increase in the relative activity of HIF-1α expression mechanisms in blood cells, 2.5 times in liver cells, and a decrease in expression by 25% in the kidneys and almost 2 times in brain tissues. A high level of basal expression of the transcription factor HIF-1α under everyday (thermocomfortable) conditions may be a predictor of a high level of resistance to hyperthermia in a given animal. Probably, to increase the body’s resistance to extreme impacts, it is advisable to use medical technologies that increase the level of HIF-1α expression in everyday (thermocomfortable) conditions in key tissues — the brain, liver, and myocardium.

About the authors

Aleksey E. Kim

Kirov Military Medical Academy

Author for correspondence.
Email: alexpann@mail.ru
ORCID iD: 0000-0003-4591-2997

MD, PhD, Associate Professor, Department of Pharmacology

Russian Federation, Saint Petersburg

Evgeny B. Shustov

Golikov Research Clinical Center of Toxicology

Email: shustov-msk@mail.ru
ORCID iD: 0000-0001-5895-688X

MD, PhD. Dr. Med. Sci., Professor, Chief Researcher

Russian Federation, Saint Petersburg

Vadim A. Kashuro

Saint Petersburg State Pediatric Medical University; Herzen University

Email: kashuro@yandex.ru
ORCID iD: 0000-0002-7892-0048

MD, PhD, Dr. Med. Sci., Associate Professor, Head of the Department of Biological Chemistry; Professor of the Department of Anatomy and Physiology of Animals and Humans, Herzen University

Russian Federation, Saint Petersburg; Saint Petersburg

Vyacheslav P. Ganapolsky

Kirov Military Medical Academy

Email: ganvp@mail.ru
ORCID iD: 0000-0001-7685-5126

MD, PhD, Dr. Med. Sci., Colonel of the Medical Service, Acting Head of the Department of Pharmacology

Russian Federation, Saint Petersburg

Elena B. Katkova

Kirov Military Medical Academy

Email: elenaelenakatkova@mail.ru

MD, PhD, Associate Professor, Department of Pharmacology

Russian Federation, Saint Petersburg

References

  1. Vetrovoi OV. Rol’ HIF1-zavisimoi regulyatsii pentozofosfatnogo puti v obespechenii reaktsii mozga na gipoksiyu [dissertation abstract]. Saint Petersburg: SPbSU, 2018. (In Russ.)
  2. Dzhalilova DSh, Makarova OV. Rol’ HIF-faktora, indutsiruemogo gipoksiei, v mekhanizmakh stareniya. Biochemistry (Moscow). 2022;87(9):1277–1300. (In Russ.) doi: 10.31857/S0320972522090081
  3. Zhukova AG, Kazitskaya AS, Sazontova TG, Mikhailova NN. Hypoxia-inducible factor (HIF): structure, function and genetic polymorphism. Hygiene and Sanitation. 2019;98(7):723–728. (In Russ.) doi: 10.18821/0016-9900-2019-98-7-723-728
  4. Luk’yanova LD, Kirova YuI, Sukoyan GV. Signal’nye mekhanizmy adaptatsii k gipoksii i ikh rol’ v sistemnoi regulyatsii. Biologiceskie membrany. 2012;29(4): 238–252. (In Russ.)
  5. Lyubimov AV, Khokhlov PP. Participation of HIF-1 in the mechanisms of neuroadaptation to acute stressful exposure. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(2):183–188. (In Russ.) doi: 10.17816/rcf192183-188
  6. Mokrov GV, Deeva OA, Yarkova MA, et al. Translocator protein TSPO 18 kDa and its ligands: a promising approach to the creation of new neuropsychotropic drug. Pharmacokinetics and Pharmacodynamics. 2018;(4):3–27. (In Russ.) doi: 10.24411/2587-7836-2018-10026
  7. Popravka ES, Linkova NS, Trofimova SV, Khavinson VKh. HIF-1 is a marker of age-related diseases associated with tissue hypoxia. Uspekhi sovremennoi biologii. 2018;138(3):259–272. (In Russ.) doi: 10.7868/S0042132418030043
  8. Serebrovskaya TV. New strategy in treatment of diseases: hypoxia — inducible factor. Herald of the International Academy of Science. Russian Section. 2006;(1):29–31. (In Russ.)
  9. Shustov EB, Karkischenko NN, Dulya MS, et al. The expression of hypoxia-inducible factor HIF1α as a criterion for the development of tissue hypoxia. Biomedicine. 2015;(4):4–15. (In Russ.)
  10. Huang B-J, Cheng X-s. Effect of hypoxia inducible factor-la on thermotolerance against hyperthemia induced cardiomyocytes apoptosis. Chinese J Cardiol. 2013;41(9):785–789.
  11. Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 2006;70(5):1469–1480. doi: 10.1124/mol.106.027029
  12. Kletkiewicz H, Hyjek M, Jaworski K, et al. Activation of hypoxia-inducible factor-1α in rat brain after perinatal anoxia: role of body temperature. Int J Hyperth. 2018;34(6):824–833. doi: 10.1080/02656736.2017.1385860
  13. Lee T-K, Kim DW, Sim H, et al. Hyperthermia accelerates neuronal loss differently between the hippocampal CA1 and CA2/3 through different HIF-1α expression after transient ischemia in gerbils. Int J Mol Med. 2022;49(4):55. doi: 10.3892/ijmm.2022.5111
  14. Leiser SF, Begun A, Kaeberlein M. HIF-1 modulates longevity and healthspan in a temperature-dependent manner. Aging Cell. 2011;10(2):318–326. doi: 10.1111/j.1474-9726.2011.00672.x
  15. Lin J, Fan L, Han Y, et al. The mTORC1/eIF4E/HIF-1α pathway mediates glycolysis to support brain hypoxia resistance in the Gansu Zocor, Eospalax cansus. Front Physiol. 2021;12:626240. doi: 10.3389/fphys.2021.626240
  16. Maloyan A, Eli-Berchoer L, Semenza GL, et al. HIF-1α-targeted pathways are activated by heat acclimation and contribute to acclimation-ischemic cross-tolerance in the heart. Physiol Genomics. 2005;23(1):79–88. doi: 10.1152/physiolgenomics.00279.2004
  17. Minet E, Mottet D, Michel G, et al. Hypoxia-induced activation of HIF-1: Role of HIF-1α-Hsp90 interaction. FEBS Lett. 1999;460(2):251–256. doi: 10.1016/S0014-5793(99)01359-9
  18. Moon EJ, Sonveaux P, Porporato PE, et al. NADPH oxidase-mediated reactive oxygen species production activates hypoxia-inducible factor-1 (HIF-1) via the ERK pathway after hyperthermia treatment. PNAS USA. 2010;107(47):20477–20482. doi: 10.1073/pnas.1006646107
  19. Pugh CW. Modulation of the hypoxic response. In: Roach RC, Hackett PH, Wagner PD, editors. Hypoxia. New York: Springer, 2016. P. 259–271. doi: 10.1007/978-1-4899-7678-9_18
  20. Semenza GL. Pharmacologic targeting of hypoxia-inducible factors. Annu Rev Pharmacol Toxicol. 2019;59(1) 379–403. doi: 10.1146/annurev-pharmtox-010818-021637
  21. Semenza GL. Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol. 2002;64(5–6):993–998. doi: 10.1016/S0006-2952(02)01168-1
  22. Wang L, Jiang M, Duan D, et al. Hyperthermia-conditioned OECs serum-free-conditioned medium induce NSC differentiation into neuron more efficiently by the upregulation of HIF-1 alpha and binding activity. Transplantation. 2014;97(12):1225–1232. doi: 10.1097/TP.0000000000000118

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Coefficients of reactivity to thermal effects of the expression of the hypoxia-inducible factor HIF-1α in different tissues in groups of high- and low-resistant animals (RT and RL, respectively)

Download (166KB)

Copyright (c) 2023 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».