The experience of neural network prediction of the need for surgical treatment in patients with the diseases of hepatopancreatoduodenal zone

Cover Page

Cite item

Full Text

Abstract

Aim. Using multilayer perceptron artificial neural network, to develop a mathematical model for predicting the need for surgical intervention in patients admitted for hepatopancreatoduodenal zone diseases and to assess the capabilities for its clinical application.

Methods. The study was performed using the data of 488 patients with peptic ulcer, cholecystitis or pancreatitis, analyzed using multilayer perceptron artificial neural network, trained to distinguish vectors of data on risk factors of patients who did or did not require surgical intervention during current hospitalization.

Results. Patients in the training sample who had required surgical intervention during hospitalization were different from patients who had undergone conservative treatment by such characteristics as gender, age, duration of the disease, state on admission, and the structure of risk factors. The acquired data made it possible to train the artificial neural network. The ROC analysis of the mathematical model demonstrated the area under the curve (AUC) equal to 0.880 for the training group (n=385) and 0.739 for the clinical approbation group (n=103).

Conclusion. The AUC indicators of the created model can be characterized as very good in terms of predicting the need for surgical treatment in the training group and good for the clinical approbation group: sensitivity and specificity of the model exceed 80% in the training group and are highest in patients with peptic ulcer disease; in the clinical approbation group these parameters were lower as expected, however, remained at the level of 60-70%.

About the authors

V A Lazarenko

Kursk State Medical Unviersity

Author for correspondence.
Email: drantonov@mail.ru
Kursk, Russia

T V Zarubina

Russian National Research Medical University named after N.I. Pirogov

Email: drantonov@mail.ru
Moscow, Russia

A E Antonov

Kursk State Medical Unviersity

Email: drantonov@mail.ru
Kursk, Russia

S Sood

Centre for Development of Advanced Computing

Email: drantonov@mail.ru
Mohali, India

References

  1. Ivanenko V.A., Zolotareva R.I. Preoperation examination as a cornerstone of safe surgical treatment. In: Meditsina katastrof: obuchenie, nauka i praktika. Sbornik materialov nauchno-prakticheskoy konferentsii. (Medicine of catastrophes: education, science and practice. Collection of proceedings of scientific and practical conference.) 2015; 143–144. (In Russ.)
  2. Korochanskaya N.V., Rogal’ M.L., Makarenko A.V., Murashko N.V. Pre-opera­tive preparation of patients with complicated chronic pancreatitis. Vestnik MUZ GB №2. 2013; (1): 1–8. (In Russ.)
  3. Konstantinova E.D., Varaksin A.N., Zhovner I.V. Identification of the main risk factors for non-infectious diseases: method of classification trees. Gigiena i sanitarija. 2013; (5): 69–72. (In Russ.)
  4. Skvorcova V.I. Seven principles of moernization of healthcare. Voprosy ekonomiki i upravleniya dlya rukovoditeley zdravookhraneniya. 2010; (5): 7–14. (In Russ.)
  5. Greenes R.A. Clinical decision support: the road ahead Amsterdam. Boston: Elsevier. 2007; 581 p.
  6. Chubukova I.A. Data Mining. Moscow: BINOM. Laboratoriya znaniy. 2008; 324 p. (In Russ.)
  7. Shchepin V.O., Rastorgueva T.I., Proklova T.N. Towards prospective directions of healthcare development in the Russian Federation. Byulleten’ Natsional’nogo nauchno-issledova­tel’skogo instituta obshhestvennogo zdorov’ya imeni N.A. Semashko. 2012; (1): 147–152. (In Russ.)
  8. Mustafaev A.G. Use of artificial neural networks in early diagnosis of diabetes mellitus. Kibernetika i programmirovanie. 2016; (2): 1–7. (In Russ.)
  9. Medvedev N.V., Lobyntseva E.M. The possibilities of neural network analysis to evaluate the prognosis of chronic heart failure in elderly. Vestnik novykh meditsinskikh tekhnologiy. 2015; 22 (1): 6–11. (In Russ.)
  10. Yasnitsky L.N., Dumler A.A., Poleshchuk A.N. et al. Artificial neural networks for obtaining new medical knowledge: Diagnostics and prediction of cardiovascular disease progression. Biol. Med. (Aligarh.) 2015; 7 (2): BM-095-15,8.
  11. Prezident Rossii. Zasedanie Soveta po nauke i obrazovaniyu. (President of Russia. Meeting of the Council for Science and Education.) http://kremlin.ru/events/president/news/56827 (access date: 15.02.2018). (In Russ.)
  12. Lazarenko V.A., Antonov A.E. Experience of the development of the software package for neural network diagnosis and prediction of diseases of hepatopancreatoduodenal zone. Vrach i informatsionnye tekhnologii. 2017; (4): 132–140. (In Russ.)
  13. Lazarenko V.A., Antonov A.E. Evaluation of the quality of functioning of artificial neural network with logic outputs in the diagnosis of diseases of hepatopancreatoduodenal zone. Kazanskiy meditsinskiy zhurnal. 2017; 98 (6): 928–932. (In Russ.)
  14. Lazarenko V.A., Antonov A.E., Prasolov A.V., Churilin M.I. Evaluating the efficiency of neural network prognosis of health quantitative indicators in patients with diseases of the hepatopancreatoduodenal zone. Yakutsliy meditsinskiy zhurnal. 2017; (3): 83–85. (In Russ.)
  15. BaseGroup Labs. Tekhnologii analiza dannykh Logisticheskaya regressiya i ROC-analiz — matematicheskiy apparat. (Technologies of Data Mining. Logistic Regression and ROC-Analysis. Mathematical Apparatus.) https://basegroup.ru/community/articles/logistic (access date: 15.02.2018). (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2018 Lazarenko V.A., Zarubina T.V., Antonov A.E., Sood S.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».