Methodological aspects of creation of patient-derived tumor xenografts

Cover Page

Cite item

Abstract

High rates of cancer incidence and mortality from malignant neoplasms remains an urgent health problem. The development of the most effective therapeutic algorithms is required to improve the survival of cancer patients. An important condition for the discovery of new anticancer drugs and their translation into clinical practice involves the ability to model tumor growth, reproduce the characteristics of human disease, and evaluate measurable effects of pharmacological substances in laboratory facilities. Xenograft models established by direct implantation of fresh tumor tissue samples from individual patients into immunodeficient mice are considered suitable for both preclinical trials and for solving fundamental problems in oncology. The review highlights the significance of patient-­derived xenograft models as a platform with high predictive value and the prerequisites that make them the preferred tool for research in cancer biology. The most important methodological aspects in the creation of these models are considered. Methods for obtaining and preparing biological tumor samples for xenotransplantation are discussed. The significance of the immune status, as well as the phenotypic and genetic characteristics of recipient animals, is described. The article presents the limitations of animal models associated with their immunodeficiency status and ways to overcome them. The principles for choosing xenotransplantation sites (heterotopic and orthotopic) and their advantages and disadvantages are discussed. In conclusion, we emphasize the need to continue the work on optimizing PDX (Patient-Derived Xenograft) models to overcome their limitations and to obtain the most reliable and valuable research results in oncology.

About the authors

A S Goncharova

National Medical Research Centre for Oncology

Author for correspondence.
Email: fateyeva_a_s@list.ru
Russian Federation, Rostov-on-Don, Russia

A N Shevchenko

National Medical Research Centre for Oncology

Email: onko-sekretar@mail.ru
Russian Federation, Rostov-on-Don, Russia

I R Dashkova

National Medical Research Centre for Oncology

Email: onko-sekretar@mail.ru
Russian Federation, Rostov-on-Don, Russia

A E Anisimov

National Medical Research Centre for Oncology

Email: onko-sekretar@mail.ru
Russian Federation, Rostov-on-Don, Russia

References

  1. Kaprin A.D., Aleksandrova L.M., Starinsky V.V., Mamontov A.S. Technologies for early diagnosis and screening in the early detection of malignant neoplasms. Onkologija. Zhurnal im. P.A. Gertsena. 2018; 7 (1): 34–40. (In Russ.) doi: 10.17116/onkolog20187134-40.
  2. Kit O.I., Kolesnikov E.N., Maksimov A.U., Snezhko A.V., Sagakyants A.B., Al-Hadzh N.K.M., Averkin M.A., Zlatnik E.Yu., Sitkovskaya A.O. Combined treatment of rectal cancer, with using preoperative radiation therapy. Mo­dern problems of science and education. 2018; (4): 130–141. (In Russ.)
  3. Miller K.D., Nogueira L., Mariotto A.B., Rowland J.H., Yabroff K.R., Alfano C.M., Jemal A., Kra­mer J.L., Siegel R.L. Cancer treatment and survivorship statistics, 2019. CA: Cancer J. Clin. 2019; 69 (5): 363–385. doi: 10.3322/caac.21565.
  4. Lai Y., Wei X., Lin S., Qin L., Cheng L., Li P. Current status and perspectives of patient-derived xenograft models in cancer research. J. Hematol. Oncol. 2017; 10 (1): 106. doi: 10.1186/s13045-017-0470-7.
  5. Armitage E.G., Ciborowski M. Applications of metabolomics in cancer studies. In: Advances in Experimental Medicine and Biology, Vol. 965. Metabolomics: From fundamentals to clinical applications. Cham: Springer. 2017; 209–234. doi: 10.1007/978-3-319-47656-8_9.
  6. Tyanova S., Juergen C. Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research. In: Methods in Molecular Biology, Vol 1711. Cancer Systems Biology. New York: Humana Press. 2018; 133–148. doi: 10.1007/978-1-4939-7493-1_7.
  7. Hristova V.A., Chan D.W. Cancer biomarker discovery and translation: proteomics and beyond. Expert Rev. Proteomics. 2019; 16 (2): 93–103. doi: 10.1080/14789450.2019.1559062.
  8. Ireson C.R., Alavijeh M.S., Palmer A.M., Fow­ler E.R., Jones H.J. The role of mouse tumor models in the discovery and development of anticancer drugs. Brit. J. Cancer. 2019; 121 (2): 101–108. doi: 10.1038/s41416-019-0495-5.
  9. Gould S.E., Junttila M.R., de Sauvage F.J. Translational value of mouse models in oncology drug development. Nature Med. 2015; 21 (5): 431–439. doi: 10.1038/nm.3853.
  10. Bhimani J., Ball K., Stebbing J. Patient-derived xenograft models — the future of personalised cancer treatment. Brit. J. Cancer. 2020; 122 (5): 601–602. doi: 10.1038/s41416-019-0678-0.
  11. Chabner B.A. NCI-60 Cell line screening: a radical departure in its time. JNCI: J. National Cancer Institute. 2016; 108 (5): djv388. doi: 10.1093/jnci/djv388.
  12. Raghu V.K., Beckwitt C.H., Warita K., Wells A., Benos P.V., Oltvai Z.N. Biomarker identification for statin sensitivity of cancer cell lines. Biochem. Biophys. Res. Communications. 2018; 495 (1): 659–665. doi: 10.1016/j.bbrc.2017.11.065.
  13. Jung J., Seol H.S., Chang S. The generation and application of patient-derived xenograft model for cancer research. Cancer Res. Treat. 2018; 50 (1): 1–10. doi: 10.4143/crt.2017.307.
  14. Bleijs M., van de Wetering M., Clevers H., Drost J. Xenograft and organoid model systems in cancer research. EMBO J. 2019; 38 (15): e101654. doi: 10.15252/embj.2019101654.
  15. Koga Y., Ochiai A. Systematic review of patient-­derived xenograft models for preclinical studies of anti-cancer drugs in solid tumors. Cells. 2019; 8 (5): 418. doi: 10.3390/cells8050418.
  16. Gao H., Korn J.M., Ferretti S., Monahan J.E., Wang Y., Singh M., Zhang C., Schnell C., Yang G., Zhang Y., Balbin O.A., Barbe S., Cai H., Casey F., Chatterjee S., Chiang D.Y., Chuai S., Cogan S.M., Collins S.D., Dammassa E., Ebel N., Embry M., Green J., Kauffmann A., Kowal C., Leary R.J., Lehar J., Liang Y., Loo A., Lorenzana E., Robert McDonald E. 3rd, McLaughlin M.E., Merkin J., Meyer R., Naylor T.L., Patawaran M., Reddy A., Röelli C., Ruddy D.A., Salangsang F., Santacroce F., Singh A.P., Tang Y., Tinetto W., Tobler S., Velazquez R., Venkatesan K., Von Arx F., Wang H.Q., Wang Z., Wies­mann M., Wyss D., Xu F., Bitter H., Atadja P., Lees E., Hofmann F., Li E., Keen N., Cozens R., Jensen M.R., Pryer N.K., Williams J.A., Sellers W.R. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nature Med. 2015; 21 (11): 1318–1325. doi: 10.1038/nm.3954.
  17. Ledford H. US cancer institute overhauls cell lines: veteran cells to be replaced by human tumours grown in mice. Nature. 2016; 530 (7591): 391.
  18. Ji X., Chen S., Guo Y., Li W., Qi X., Yang H., Xiao S., Fang G., Hu J., Wen C., Liu H., Han Z., Deng G., Yang Q., Yang X., Xu Y., Peng Z., Li F., Cai N., Li G., Huang R. Establishment and evaluation of four different types of patient-derived xenograft models. Cancer Cell Intern. 2017; 17: 122. doi: 10.1186/s12935-017-0497-4.
  19. Okada S., Vaeteewoottacharn K., Kariya R. Establishment of a patient-derived tumor xenograft model and application for precision cancer medicine. Chem. Pharm. Bull. 2018; 66 (3): 225–230. doi: 10.1248/cpb.c17-00789.
  20. Goto T. Patient-derived tumor xenograft models: toward the establishment of precision cancer medicine. J. Personalized Med. 2020; 10 (3): 64. doi: 10.3390/jpm10030064.
  21. Moro M., Bertolini G., Caserini R., Borzi C., Boeri M., Fabbri A., Leone G., Gasparini P., Galeone C., Pelosi G., Roz L., Sozzi G., Pastorino U. Establishment of patient derived xenografts as functional testing of lung cancer aggressiveness. Sci. Rep. 2017; 7 (1): 6689. doi: 10.1038/s41598-017-06912-7.
  22. Yu J., Qin B., Moyer A.M., Sinnwell J.P., Thompson K.J., Copland J.A. 3rd, Marlow L.A., Miller J.L., Yin P., Gao B., Minter-Dykhouse K., Tang X., McLaughlin S.A., Moreno-Aspitia A., Schweitzer A., Lu Y., Hubbard J., Northfelt D.W., Gray R.J., Hunt K., Conners A.L., Suman V.J., Kalari K.R., Ingle J.N., Lou Z., Visscher D.W., Weinshilboum R., Boughey J.C., Goetz M.P., Wang L. Establishing and characterizing patient-derived xenografts using pre-chemotherapy percutaneous biopsy and post-chemotherapy surgical samples from a prospective neoadjuvant breast cancer study. Breast Cancer Res. 2017; 19 (1): 130. doi: 10.1186/s13058-017-0920-8.
  23. Murayama T., Gotoh N. Patient-derived xenograft models of breast cancer and their application. Cells. 2019; 8 (6): 621. doi: 10.3390/cells8060621.
  24. Li X., Zhu D., Li N., Yang H., Zhao Z., Li M. Cha­racterization of ascites-derived tumor cells from an endometrial cancer patient. Cancer Sci. 2017; 108 (12): 2352–2357. doi: 10.1111/cas.13407.
  25. Xu Y., Zhang F., Pan X., Wang G., Zhu L., Zhang J., Wen D., Lu S. Xenograft tumors derived from malignant pleural effusion of the patients with non-small-cell lung cancer as models to explore drug resistance. Cancer Communications. 2018; 38 (1): 19. doi: 10.1186/s40880-018-0284-1.
  26. Murashko D.A., Semenov M.S., Ilyin M.A., Osipov A.N., Samoilov A.S., Zabelin M.V. The prospects of the sampling live tumoral material of patients with aggressive tumor diseases. Zdravoohranenie, obrazovanie i bezopasnost'. 2017; (1): 7–17. (In Russ.)
  27. Cho S.Y. Patient-derived xenografts as compatible models for precision oncology. Lab. Animal Res. 2020; 36: 14. doi: 10.1186/s42826-020-00045-1.
  28. Hidalgo M., Amant F., Biankin A.V., Budinská E., Byrne A.T., Caldas C., Clarke R.B., de Jong S., Jonkers J., Mælandsmo G.M., Roman-Roman S., Seoane J., Trusolino L., Villanueva A. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discovery. 2014; 4 (9): 998–1013. doi: 10.1158/2159-8290.CD-14-0001.
  29. Xiao M., Rebecca V.W., Herlyn M. A melanoma patient-derived xenograft model. J. Visualized Experim. 2019; (147): e59508. doi: 10.3791/59508.
  30. Karamboulas C., Meens J., Ailles L. Establishment and use of patient-derived xenograft models for drug testing in head and neck squamous cell carcinoma. STAR Protocols. 2020; 1 (1): 100024. doi: 10.1016/j.xpro.2020.100024.
  31. Ashrafizadeh M., Mohammadinejad R., Tavakol S., Ahmadi Z., Roomiani S., Katebi M. Autophagy, anoikis, ferroptosis, necroptosis, and endoplasmic reticulum stress: Potential applications in melanoma therapy. J. Cellular Physiol. 2019; 234 (11): 19 471–19 479. doi: 10.1002/jcp.28740.
  32. Hiroshima Y., Maawy A., Zhang Y., Zhang N., Murakami T., Chishima T., Tanaka K., Ichikawa Y., Bouvet M., Endo I., Hoffman R.M. Patient-derived mouse models of cancer need to be orthotopic in order to evaluate targeted anti-metastatic therapy. Oncotarget. 2016; 7: 71 696–71 702. doi: 10.18632/oncotarget.12322.
  33. Shi J., Li Y., Jia R., Fan X. The fidelity of cancer cells in PDX models: Characteristics, mechanism and cli­nical significance. Intern. J. Cancer. 2020; 146 (8): 2078–2088. doi: 10.1002/ijc.32662.
  34. Inoue A., Deem A.K., Kopetz S., Heffernan T.P., Draetta G.F., Carugo A. Current and future horizons of patient-derived xenograft models in colorectal cancer translational research. Cancers. 2019; 11 (9): 1321. doi: 10.3390/cancers11091321.
  35. Mindar M.V., Lukbanova E.A., Kit S.O., Anisimov A.E., Egorov G.Yu., Volovik V.G. Importance of immunodeficient mice for experimental and preclinical studies in oncology. Sibirskiy nauchnyy meditsinskiy zhurnal. 2020; 40 (3): 10–20. (In Russ.) doi: 10.15372/SSMJ20200302.
  36. Oliveira C.F., Lara N.L., Lacerda S.M., Resende R.R., França L.R., Avelar G.F. Foxn1 and Prkdc genes are important for testis function: evidence from nude and scid adult mice. Cell and Tissue Res. 2020; 380 (3): 615–625. doi: 10.1007/s00441-019-03165-w.
  37. Gawronska-Kozak B. Foxn1 control of skin function. Applied Sci. 2020; 10 (16): 5685. doi: 10.3390/app10165685.
  38. Kim J.I., Park J.S., Kim H., Ryu S.K., Kwak J., Kwon E., Yun J.W., Nam K.T., Lee H.W., Kang B.C. ­CRISPR/Cas9-mediated knockout of Rag-2 causes systemic lymphopenia with hypoplastic lymphoid organs in FVB mice. Lab. Animal Res. 2018; 34 (4): 166–175. doi: 10.5625/lar.2018.34.4.166.
  39. Hanazawa A., Ito R., Katano I., Kawai K., Goto M., Suemizu H., Kawakami Y., Ito M., Takahashi T. Generation of human immunosuppressive myeloid cell populations in human interleukin-6 transgenic NOG mice. Front. Immunol. 2018; 9: 152. doi: 10.3389/fimmu.2018.00152.
  40. Okada S., Vaeteewoottacharn K., Kariya R. Application of highly immunocompromised mice for the establishment of patient-derived xenograft (PDX) models. Cells. 2019; 8 (8): 889. doi: 10.3390/cells8080889.
  41. Liu Y.C., Chen Q., Yang X.L., Tang Q.S., Yao K.T., Xu Y. Generation of a new strain of NOD/SCID/IL2Rγ–/– mice with targeted disruption of Prkdc and IL2Rγ genes using CRISPR/Cas9 system. J. Southern Med. University. 2018; 38 (6): 639–646. doi: 10.3969/j.issn.1673-4254.2018.06.01.
  42. Wei X., Lai Y., Li B., Qin L., Xu Y., Lin S., Wang S., Wu Q., Liang Q., Huang G., Deng Q., Liu P., Wu D., Lai L., Yao Y., Li P. CRISPR/Cas9-mediated deletion of Foxn1 in NOD/SCID/IL2rg–/– mice results in severe immunodeficiency. Sci. Rep. 2017; 7: 7720. doi: 10.1038/s41598-017-08337-8.
  43. Collins A.T., Lang S.H. A systematic review of the validity of patient derived xenograft (PDX) models: the implications for translational research and personalised medicine. Peer. J. 2018; 6: e5981. doi: 10.7717/peerj.5981.
  44. Li G. Patient-derived xenograft models for oncology drug discovery. J. Cancer Metastasis and Treat. 2015; 1: 8–15. doi: 10.4103/2394-4722.152769.
  45. Schmidt C., Schubert N.A., Brabetz S., Mack N., Schwalm B., Chan J.A., Selt F., Herold-Mende C., Witt O., Milde T., Pfister S.M., Korshunov A., Kool M. Preclinical drug screen reveals topotecan, actinomycin D, and volasertib as potential new therapeutic candidates for ETMR brain tumor patients. Neuro-oncology. 2017; 19 (12): 1607–1617. doi: 10.1093/neuonc/nox093.
  46. Kurokawa C., Iankov I.D., Anderson S.K., Aderca I., Leontovich A.A., Maurer M.J., Oberg A.L., Schroeder M.A., Giannini C., Greiner S.M., Becker M.A., Thompson E.A., Haluska P., Jentoft M.E., Parney I.F., Weroha S.J., Jen J., Sarkaria J.N., Galanis E. Constitutive interferon pathway activation in tumors as an efficacy determinant following oncolytic virotherapy. J. National Cancer Institute. 2018; 110 (10): 1123–1132. doi: 10.1093/jnci/djy033.
  47. Cazet A.S., Hui M.N., Elsworth B.L., Wu S.Z., Roden D., Chan C.L., Skhinas J.N., Collot R., Yang J., Harvey K., Johan M.Z., Cooper C., Nair R., Herrmann D., ­McFarland A., Deng N., Ruiz-Borrego M., Rojo F., Trigo J.M., Bezares S., Caballero R., Lim E., Timpson P., O'Toole S., Watkins D.N., Cox T.R., Samuel M.S., Martín M., Swarbrick A. Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer. Nature Communications. 2018; 9 (1): 2897. doi: 10.1038/s41467-018-05220-6.
  48. Lim H.I., Hamada K., Yamamoto J., Han Q., Tan Y., Choi H.J., Nam S.J., Bouvet M., Hoffman R.M. Oral methioninase inhibits recurrence in a PDOX mouse model of aggressive triple-negative breast cancer. In Vivo. 2020; 34 (5): 2281–2286. doi: 10.21873/invivo.12039.
  49. Higuchi T., Sugisawa N., Miyake K., Oshiro H., Yamamoto N., Hayashi K., Kimura H., Miwa S., Igarashi K., Kline Z., Belt P., Chawla S.P., Bouvet M., Singh S.R., Tsuchiya H., Hoffman R.M. Combination treatment with Sorafenib and Everolimus regresses a Doxorubicin-resistant osteosarcoma in a PDOX mouse model. Anticancer Res. 2019; 39 (9): 4781–4786. doi: 10.21873/anticanres.13662.
  50. Wang Y., Wang J.X., Xue H., Lin D., Dong X., Gout P.W., Gao X., Pang J. Subrenal capsule grafting technology in human cancer modeling and translational cancer research. Differentiation. 2016; 91 (4–5): 15–19. doi: 10.1016/j.diff.2015.10.012.
  51. Serna V.A., Kurita T. Patient-derived xenograft model for uterine leiomyoma by sub-renal capsule graf­ting. J. Biol. Methods. 2018; 5 (2): e91. doi: 10.14440/jbm.2018.243.
  52. Larmour L.I., Cousins F.L., Teague J.A., Deane J.A., Jobling T.W., Gargett C.E. A patient derived xenograft model of cervical cancer and cervical dysplasia. PLoS One. 2018; 13 (10): e0206539. doi: 10.1371/journal.pone.0206539.
  53. Priolo C., Agostini M., Vena N., Ligon A.H., Fiorentino M., Shin E., Farsetti A., Pontecorvi A., Sicinska E., Loda M. Establishment and genomic characterization of mouse xenografts of human primary prostate tumors. Am. J. Pathol. 2010; 176 (4): 1901–1913. doi: 10.2353/ajpath.2010.090873.
  54. Zhao H., Nolley R., Chen Z., Peehl D.M. Tissue slice grafts: an in vivo model of human prostate androgen signaling. Am. J. Pathol. 2010; 177 (1): 229–239. doi: 10.2353/ajpath.2010.090821.
  55. Qu S., Ci X., Xue H., Dong X., Hao J., Lin D., Clermont P.L., Wu R., Collins C.C., Gout P.W., Wang Y. Treatment with docetaxel in combination with Aneustat leads to potent inhibition of metastasis in a patient-derived xenograft model of advanced prostate cancer. Brit. J. Cancer. 2018; 118 (6): 802–812. doi: 10.1038/bjc.2017.474.
  56. Tang S., Yang R., Zhou X., Pan H., Liu J. Expression of GOLPH3 in patients with non-small cell lung cancer and xenografts models. Oncology Letters. 2018; 15 (5): 7555–7562. doi: 10.3892/ol.2018.8340.
  57. Heo E.J., Cho Y.J., Cho W.C., Hong J.E., Jeon H.K., Oh D.Y., Choi Y.L., Song S.Y., Choi J.J., Bae D.S., Lee Y.Y., Choi C.H., Kim T.J., Park W.Y., Kim B.G., Lee J.W. Patient-derived xenograft models of epithelial ovarian cancer for preclinical studies. Cancer Res. Treat. 2017; 49 (4): 915–926. doi: 10.4143/crt.2016.322.
  58. Lee J., Jo D.H., Kim J.H., Cho C.S., Han J.E., Kim Y., Park H., Yoo S.H., Yu Y.S., Moon H.E., Park H.R., Kim D.G., Kim J.H., Paek S.H. Development of a patient-derived xenograft model of glioblastoma via intra­vitreal injection in mice. Experim. Mol. Med. 2019; 51 (4): 1–9. doi: 10.1038/s12276-019-0241-3.
  59. Kiblitskaya A.A., Shevchenko A.N., Pandova O.V., Ardzha A.Y. Biobanking of patient-derived xenografts as a basis for translation research in oncology. Modern problems of science and education. 2021; (3): 186. (In Russ.) doi: 10.17513/spno.30879.
  60. Tellez-Gabriel M., Cochonneau D., Cade M., Jubelin C., Heymann M.F., Heymann D. Circulating tumor cell-derived pre-clinical models for personalized medicine. Cancers. 2018; 11 (1): 19. doi: 10.3390/cancers11010019.
  61. Praharaj P.P., Bhutia S.K., Nagrath S., Bitting R.L., Deep G. Circulating tumor cell-derived organoids: Current challenges and promises in medical research and precision medicine. Biochim. Biophys. Acta (BBA) — Rev. Cancer. 2018; 1869 (2): 117–127. doi: 10.1016/j.bbcan.2017.12.005.
  62. Hodgkinson C.L., Morrow C.J., Li Y., Metcalf R.L., Rothwell D.G., Trapani F., Polanski R., Burt D.J., Simpson K.L., Morris K., Pepper S.D., Nonaka D., Greystoke A., Kelly P., Bola B., Krebs M.G., Antonello J., Ayub M., Faulkner S., Priest L., Carter L., Tate C., Miller C.J., Blackhall F., Brady G., Dive C. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nature Med. 2014; 20 (8): 897–903. doi: 10.1038/nm.3600.
  63. Liu Z., Ahn M.H.Y., Kurokawa T., Ly A., Zhang G., Wang F., Yamada T., Sadagopan A., Cheng J., Ferrone C.R., Liss A.S., Honselmann K.C., Wojtkiewicz G.R., Ferrone S., Wang X. A fast, simple, and cost-effective method of expanding patient-derived xenograft mouse models of pancreatic ductal adenocarcinoma. J. Translational Med. 2020; 18 (1): 255. doi: 10.1186/s12967-020-02414-9.
  64. Wu T., Dai Y. Tumor microenvironment and the­rapeutic response. Cancer Letters. 2017; 387: 61–68. doi: 10.1016/j.canlet.2016.01.043.
  65. Yu Y., Cui J. Present and future of cancer immunotherapy: A tumor microenvironmental perspective. Oncology Letters. 2018; 16 (4): 4105–4113. doi: 10.3892/ol.2018.9219.
  66. Shamova T.V., Sitkovskaya A.O., Vashchenko L.N., Kechedzhieva E.E. Adoptive cell therapy: current advances. Yuzhno-rossiyskiy onkologicheskiy zhurnal. 2020; 1 (1): 43–59. (In Russ.) doi: 10.37748/2687-0533-2020-1-1-4.
  67. Yao L.C., Aryee K.E., Cheng M., Kaur P., Keck J.G., Brehm M.A. Creation of PDX-bearing humanized mice to study immunooncology. In: Methods in Molecular Biology, Vol. 1953. Target identification and validation in drug discovery. New York: Humana Press. 2019; 241–252. doi: 10.1007/978-1-4939-9145-7_15.
  68. Liu W.N., Fong S.Y., Tan W.W.S., Tan S.Y., Liu M., Cheng J.Y., Lim S., Suteja L., Huang E.K., Chan J.K.Y., Iyer N.G., Yeong J.P.S., Lim D.W., Chen Q. Establishment and characterization of humanized mouse NPC-PDX ­model for testing immunotherapy. Cancers. 2020; 12 (4): 1025. doi: 10.3390/cancers12041025.
  69. Holzapfel B.M., Wagner F., Thibaudeau L., Le­vesque J.P., Hutmacher D.W. Concise review: Huma­nized models of tumor immunology in the 21st century: convergence of cancer research and tissue engineering. Stem. Cells. 2015; 33 (6): 1696–1704. doi: 10.1002/stem.1978.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Схема общей процедуры создания и применения PDX-моделей

Download (29KB)

© 2021 Eco-Vector





Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».