Molecular mechanisms of berberine action on tumor cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Malignant tumors remain one of the leading causes of mortality worldwide, highlighting the urgent need to develop novel and effective therapeutic strategies. In recent years, the scientific community has actively pursued agents that combine high efficacy with minimal adverse effects and offer the potential to induce complete remission. In this context, berberine is a natural phytochemical derived from various Berberis species. It has garnered considerable interest due to its diverse pharmacological properties. Berberine, known as a nutraceutical, exhibits a broad spectrum of biological activity, including anti-inflammatory, antioxidant, and antitumor effects. In vitro and in vivo studies have shown that berberine exerts inhibitory activity against several cancer types, including breast, lung, liver, and colorectal cancers. Its antitumor properties are associated with several key molecular mechanisms through which it exerts effects on tumor cells. This review provides a detailed overview of the molecular pathways through which the antitumor effects of berberine are mediated. In particular, berberine activates the caspase cascade, leading to the induction of apoptosis in tumor cells, and inhibits cell proliferation by blocking key signaling pathways such as PI3K/Akt/mTOR. It also modulates the expression of genes involved in cell migration and invasion, including matrix metalloproteinases and E-cadherin, highlighting its potential as a promising therapeutic candidate. Additionally, berberine’s anti-inflammatory effects may contribute to cancer prevention by protecting cells from oxidative stress and chronic inflammation associated with tumor development. These pharmacological properties make berberine a promising agent for further investigation and clinical application, both as monotherapy and in combination with standard anticancer therapies. Thus, berberine represents a promising subject for further investigation of its molecular mechanisms of action and potential use in oncology, which may lead to the development of more effective and safer therapeutic strategies for patients with malignant tumors.

About the authors

Sofia V. Timofeeva

National Medical Research Centre of Oncology

Author for correspondence.
Email: timofeeva.sophia@gmail.com
ORCID iD: 0000-0002-5945-5961
SPIN-code: 5362-1915
Scopus Author ID: 57243356500
ResearcherId: L-8536-2016

Res. Assoc., Cellular Technology Lab.

Russian Federation, 14th Line st,Rostov-on-Don, 344019

Elena Yu. Zlatnik

National Medical Research Centre of Oncology

Email: elena-zlatnik@mail.ru
ORCID iD: 0000-0002-1410-122X
SPIN-code: 4137-7410

MD, Dr. Sci. (Med.), prof., chief res. assoc., Tumor Immunophenotyping Lab.

Russian Federation, 14th Line st,Rostov-on-Don, 344019

Larisa N. Vaschenko

National Medical Research Centre of Oncology

Email: onko-sekretar@mail.ru
ORCID iD: 0000-0003-1610-0826
SPIN-code: 5573-4396

MD, Dr. Sci. (Med.), prof., head of Depart. of tumors of bones, skin, soft tissues and mammary gland

Russian Federation, 14th Line st,Rostov-on-Don, 344019

Yaroslav S. Enin

National Medical Research Centre of Oncology

Email: dendro51@yandex.ru
ORCID iD: 0000-0002-4572-1579
SPIN-code: 7683-2286

junior res. assoc., molecular oncology lab.

Russian Federation, 14th Line st,Rostov-on-Don, 344019

Evgeniya M. Nepomnyashchaya

National Medical Research Centre of Oncology

Email: iftrnioi@yandex.ru
ORCID iD: 0000-0003-0521-8837
SPIN-code: 8930-9580

MD, Dr. Sci. (Med.), prof., pathologist, pathological anatomy Depart.

Russian Federation, 14th Line st,Rostov-on-Don, 344019

References

  1. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12–49. doi: 10.3322/caac.21820 EDN: OOJNAB
  2. Ahmedy OA, Kamel MW, Abouelfadl DM, et al. Berberine attenuates epithelial mesenchymal transition in bleomycin-induced pulmonary fibrosis in mice via activating A2aR and mitigating the SDF-1/CXCR4 signaling. Life Sci. 2023;322:121665. doi: 10.1016/j.lfs.2023.121665 EDN: NGGAXB
  3. Kit OI, Gevorkyan YuA, Soldatkina NV, et al. Modern surgical strategies for the treatment of metastatic colorectal cancer (literature review). South Russian Journal of Cancer. 2024;5(3):102–110. doi: 10.37748/2686-9039-2024-5-3-9 EDN: LXYRAY
  4. Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther. 2024;9(1):92. doi: 10.1038/s41392-024-01808-1 EDN: HSJXHI
  5. Allegra S, De Francia S, Turco F, et al. Phytotherapy and Drugs: Can Their Interactions Increase Side Effects in Cancer Patients? J Xenobiot. 2023;13(1):75–89. doi: 10.3390/jox13010007 EDN: OSQVXL
  6. Cuevas-Cianca SI, Romero-Castillo C, Gálvez-Romero JL, et al. Antioxidant and Anti-Inflammatory Compounds from Edible Plants with Anti-Cancer Activity and Their Potential Use as Drugs. Molecules. 2023;28(3):1488. doi: 10.3390/molecules28031488 EDN: TNNNGD
  7. Zlatnik EYu, Sagakyants AB, Nepomnyashchaya EM, et al. Possibilities of using secondary plant metabolites as antitumor agents. Kazan Medical Journal. 2024;105(5):813–824. doi: 10.17816/KMJ634368 EDN: PCGTPC
  8. Laurindo LF, de Maio MC, Minniti G, et al. Effects of Medicinal Plants and Phytochemicals in Nrf2 Pathways during Inflammatory Bowel Diseases and Related Colorectal Cancer: A Comprehensive Review. Metabolites. 2023;13(2):243. doi: 10.3390/metabo13020243 EDN: GQIGKV
  9. Olofinsan K, Abrahamse H, George BP. Therapeutic Role of Alkaloids and Alkaloid Derivatives in Cancer Management. Molecules. 2023;28(14):5578. doi: 10.3390/molecules28145578 EDN: VQUWWC
  10. Gahtori R, Tripathi AH, Kumari A, et al. Anticancer plant-derivatives: Deciphering their oncopreventive and therapeutic potential in molecular terms. Future Journal of Pharmaceutical Sciences. 2023;9(1):14. doi: 10.1186/s43094-023-00465-5 EDN: AQVSXE
  11. Zou Y, Wang S, Zhang H, et al. The triangular relationship between traditional Chinese medicines, intestinal flora, and colorectal cancer. Med Res Rev. 2024;44(2):539–67. doi: 10.1002/med.21989 EDN: GFHAWD
  12. Habtemariam S. Recent advances in berberine inspired anticancer approaches: from drug combination to novel formulation technology and derivatization. Molecules. 2020;25(6):1426. doi: 10.3390/molecules25061426 EDN: JXNAQH
  13. Farooq U, Qureshi AK, Noor H, et al. Plant extract-based fabrication of silver nanoparticles and their effective role in antibacterial, anticancer, and water treatment applications. Plants. 2023;12(12):2337. doi: 10.3390/plants12122337 EDN: EROFYK
  14. Chen H, Ye C, Wu C, et al. Berberine inhibits high fat diet-associated colorectal cancer through modulation of the gut microbiota-mediated lysophosphatidylcholine. Int I biol sci. 2023;19(7):2097. doi: 10.7150/ijbs.81824 EDN: ZYAWOZ
  15. Ling Q, Fang J, Zhai C, et al. Berberine induces SOCS1 pathway to reprogram the M1 polarization of macrophages via miR-155-5p in colitis-associated colorectal cancer. Eur J Pharm. 2023;949:175724. doi: 10.1016/j.ejphar.2023.175724 EDN: MKLDLD
  16. Goel A. Current understanding and future prospects on Berberine for anticancer therapy. Chem Biol Drug Des. 2023;102(1):177–200. doi: 10.1111/cbdd.14231 EDN: CNFLCP
  17. Liu L, Fan J, Ai G, et al. Berberine in combination with cisplatin induces necroptosis and apoptosis in ovarian cancer cells. Biol res. 2019;52:1–4. doi: 10.1186/s40659-019-0243-6
  18. Mezhevova IV, Filippova SYu, Timofeeva SV, et al. Antimigratory effect of berberine in T98G, U87MG and primary glioma cell culture. Journal of Clinical Oncology. 2021;39(15):e15045. doi: 10.1200/JCO.2021.39.15_suppl.e15045 EDN: NWYTHW
  19. Chandra S, Gahlot M, Choudhary AN, et al. Scientific evidences of anticancer potential of medicinal plants. Food Chemistry Advances. 2023;2:100239. doi: 10.1016/j.focha.2023.100239 EDN: YQWQVA
  20. Cao F, Xia W, Dai S, et al. Berberine: An inspiring resource for the treatment of colorectal diseases. Biomed Pharmacother. 2023;167:115571. doi: 10.1016/j.biopha.2023.115571 EDN: MXFOKY
  21. Shakeri F, Kiani S, Rahimi G, Boskabady MH. Anti-inflammatory, antioxidant, and immunomodulatory effects of Berberis vulgaris and its constituent berberine, experimental and clinical, a review. Phytother Res. 2024;38(4):1882–902. doi: 10.1002/ptr.8077 EDN: GRTLRE
  22. Wani AK, Akhtar N, Mir TU, et al. Targeting apoptotic pathway of cancer cells with phytochemicals and plant-based nanomaterials. Biomolecules. 2023;13(2):194. doi: 10.3390/biom13020194 EDN: VEBAJU
  23. Gielecińska A, Kciuk M, Mujwar S, et al. Substances of natural origin in medicine: Plants vs. cancer. Cells. 2023;12(7):986. doi: 10.3390/cells12070986 EDN: WKQKQS
  24. Mohammed HA, Emwas AH, Khan RA. Salt-tolerant plants, halophytes, as renewable natural resources for cancer prevention and treatment: roles of phenolics and flavonoids in immunomodulation and suppression of oxidative stress towards cancer management. Int J Mol Sci. 2023;24(6):5171. doi: 10.3390/ijms24065171 EDN: XHIWEY
  25. Qian BZ. Inflammation fires up cancer metastasis. Semin Cancer Biol. 2017;47:170–176. doi: 10.1016/j.semcancer.2017.08.006 EDN: YIZJID
  26. Ehteshamfar SM, Akhbari M, Afshari JT, et al. Anti-inflammatory and immune-modulatory impacts of berberine on activation of autoreactive T cells in autoimmune inflammation. J Cell Mol Med. 2020;24(23):13573–13588. doi: 10.1111/jcmm.16049 EDN: WYRNII
  27. Luo Y, Tian G, Zhuang Z, et al. Berberine prevents non-alcoholic steatohepatitis-derived hepatocellular carcinoma by inhibiting inflammation and angiogenesis in mice. Am J Transl Res. 2019;11(5):2668–2682.
  28. Mokhfi FZ, Al Amin M, Zehravi M, et al. Alkaloid-based modulators of the PI3K/Akt/mTOR pathway for cancer therapy: Understandings from pharmacological point of view. Chem Biol Interact. 2024;402:111218. doi: 10.1016/j.cbi.2024.111218 EDN: ACBBOZ
  29. Rojiani MV, Alidina J, Esposito N, Rojiani AM. Expression of MMP-2 correlates with increased angiogenesis in CNS metastasis of lung carcinoma. Int J Clin Exp Pathol. 2010;3(8):775–81.
  30. Su YH, Tang WC, Cheng YW, et al. Targeting of multiple oncogenic signaling pathways by Hsp90 inhibitor alone or in combination with berberine for treatment of colorectal cancer. Biochim Biophys Acta. 2015;1853(10 Pt A):2261–72. doi: 10.1016/j.bbamcr.2015.05.012
  31. Gielecińska A, Kciuk M, Yahya EB, et al. Apoptosis, necroptosis, and pyroptosis as alternative cell death pathways induced by chemotherapeutic agents? Biochim Biophys Acta Rev Cancer. 2023;1878(6):189024. doi: 10.1016/j.bbcan.2023.189024 EDN: CLQKXK
  32. Zhu Y, Xie N, Chai Y, et al. Apoptosis Induction, a Sharp Edge of Berberine to Exert Anti-Cancer Effects, Focus on Breast, Lung, and Liver Cancer. Front Pharmacol. 2022;13:803717. doi: 10.3389/fphar.2022.803717 EDN: MWTAGJ
  33. Tkachenko A. Apoptosis and eryptosis: similarities and differences. Apoptosis. 2024;29(3–4):482–502. doi: 10.1007/s10495-023-01915-4 EDN: CDNJFF
  34. Rodríguez-González J, Gutiérrez-Kobeh L. Apoptosis and its pathways as targets for intracellular pathogens to persist in cells. Parasitol Res. 2023;123(1):60. doi: 10.1007/s00436-023-08031-x EDN: AJAPNM
  35. Chen Q, Hou Y, Li D, et al. Berberine induces non-small cell lung cancer apoptosis via the activation of the ROS/ASK1/JNK pathway. Ann Transl Med. 2022;10(8):485. doi: 10.21037/atm-22-1298 EDN: ZHSSEK
  36. Yip NK, Ho WS. Berberine induces apoptosis via the mitochondrial pathway in liver cancer cells. Oncol Rep. 2013;30(3):1107–12. doi: 10.3892/or.2013.2543
  37. Agnarelli A, Natali M, Garcia-Gil M, et al. Cell-specific pattern of berberine pleiotropic effects on different human cell lines. Scientific reports. 2018;8(1):10599. doi: 10.1038/s41598-018-28952-3 EDN: IHLHTW
  38. Li H, Li XL, Zhang M, et al. Berberine ameliorates experimental autoimmune neuritis by suppressing both cellular and humoral immunity. Scand J Immunol. 2014;79(1):12–9. doi: 10.1111/sji.12123
  39. Yang Y, Qi J, Wang Q, et al. Berberine suppresses Th17 and dendritic cell responses. Invest Ophthalmol Vis Sci. 2013;54(4):2516–22. doi: 10.1167/iovs.12-11217
  40. Wang YX, Pang WQ, Zeng QX, et al. Synthesis and biological evaluation of new berberine derivatives as cancer immunotherapy agents through targeting IDO1. Eur J Med Chem. 2018;143:1858–1868. doi: 10.1016/j.ejmech.2017.10.078
  41. Imenshahidi M, Hosseinzadeh H. Berberine and barberry (Berberis vulgaris): a clinical review. Phytother Res. 2019;33(3):504–23. doi: 10.1002/ptr.6252 EDN: SRXADU
  42. Spinozzi S, Colliva C, Camborata C, et al. Berberine and its metabolites: relationship between physicochemical properties and plasma levels after administration to human subjects. J Nat Prod. 2014;77(4):766–72. doi: 10.1021/np400607k EDN: YAVUDA
  43. Liu J, Liu P, Xu T, et al. Berberine induces autophagic cell death in acute lymphoblastic leukemia by inactivating AKT/mTORC1 signaling. Drug Des Devel Ther. 2020;14:1813–1823. doi: 10.2147/DDDT.S239247 EDN: NPOJXS
  44. Liu J, Zhu Z, Liu Y, et al. MDM2 inhibition-mediated autophagy contributes to the pro-apoptotic effect of berberine in p53-null leukemic cells. Life sciences. 2020;242:117228. doi: 10.1016/j.lfs.2019.117228 EDN: ZJOCYX
  45. Liu L, Fan J, Ai G, et al. Berberine in combination with cisplatin induces necroptosis and apoptosis in ovarian cancer cells. Biol res. 2019;52:1–4. doi: 10.1186/s40659-019-0243-6
  46. Hsieh YC, Athar M, Chaudry IH. When apoptosis meets autophagy: deciding cell fate after trauma and sepsis. Trends Mol Med. 2009;15(3):129–38. doi: 10.1016/j.molmed.2009.01.002 EDN: YATOYX
  47. Gao M, Yeh PY, Lu YS, et al. OSU-03012, a novel celecoxib derivative, induces reactive oxygen species-related autophagy in hepatocellular carcinoma. Can Res. 2008;68(22):9348–57. doi: 10.1158/0008-5472.CAN-08-1642
  48. Yao Z, Wan Y, Li B, et al. Berberine induces mitochondrial mediated apoptosis and protective autophagy in human malignant pleural mesothelioma NCI H2452 cells. Oncol Rep. 2018;40(6):3603–10. doi: 10.3892/or.2018.6757 EDN: XZWOIS
  49. La X, Zhang L, Li Z, et al. Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells. Oncotarget. 2017;8(13):20909. doi: 10.18632/oncotarget.14959
  50. Wang J, Qi Q, Feng Z, et al. Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway. Oncotarget. 2016;7(41):66944. doi: 10.18632/oncotarget.11396 EDN: XZODOP
  51. Zhang Q, Wang X, Cao S, et al. Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways. Biomed Pharmacother. 2020;128:110245. doi: 10.1016/j.biopha.2020.110245 EDN: IYZNCF
  52. Khan SU, Fatima K, Malik F, et al. Cancer metastasis: molecular mechanisms and clinical perspectives. Pharmacol Ther. 2023;250:108522. doi: 10.1016/j.pharmthera.2023.108522 EDN: KYGWEF
  53. Rashid ZA, Bardaweel SK. Novel matrix metalloproteinase-9 (MMP-9) inhibitors in cancer treatment. Int J Mol Sci. 2023;24(15):12133. doi: 10.3390/ijms241512133 EDN: FYYQDL
  54. Polz A, Morshed K, Drop B, Polz-Dacewicz M. Could MMP3 and MMP9 Serve as Biomarkers in EBV-Related Oropharyngeal Cancer. Int J Mol Sci. 2024;25(5):2561. doi: 10.3390/ijms25052561 EDN: TQERGC
  55. Ho YT, Lu CC, Yang JS, et al. Berberine induced apoptosis via promoting the expression of caspase-8,-9 and-3, apoptosis-inducing factor and endonuclease G in SCC-4 human tongue squamous carcinoma cancer cells. Anticancer res. 2009;29(10):4063–70.
  56. Hamsa TP, Kuttan G. Berberine inhibits pulmonary metastasis through down-regulation of MMP in metastatic B16F-10 melanoma cells. Phytother Res. 2012;26(4):568–78. doi: 10.1002/ptr.3586
  57. Liu JF, Lai KC, Peng SF, et al. Berberine inhibits human melanoma A375. S2 cell migration and invasion via affecting the FAK, uPA, and NF-κB signaling pathways and inhibits PLX4032 resistant A375. S2 cell migration in vitro. Molecules. 2018;23(8):2019. doi: 10.3390/molecules23082019
  58. Wu CM, Li TM, Tan TW, et al. Berberine Reduces the Metastasis of Chondrosarcoma by Modulating the αvβ3 Integrin and the PKCδ, c-Src, and AP-1 Signaling Pathways. Evid Based Complement Alternat Med. 2013;2013(1):423164. doi: 10.1155/2013/423164
  59. Liu CH, Tang WC, Sia P, et al. Berberine inhibits the metastatic ability of prostate cancer cells by suppressing epithelial-to-mesenchymal transition (EMT)-associated genes with predictive and prognostic relevance. Int J Med Sci. 2015;12(1):63. doi: 10.7150/ijms.9982
  60. Liu X, Ji Q, Ye N, et al. Berberine inhibits invasion and metastasis of colorectal cancer cells via COX-2/PGE2 mediated JAK2/STAT3 signaling pathway. PloS one. 2015;10(5):e0123478. doi: 10.1371/journal.pone.0123478
  61. Hu Q, Li L, Zou X, et al. Berberine attenuated proliferation, invasion and migration by targeting the AMPK/HNF4α/WNT5A pathway in gastric carcinoma. Front pharmacol. 2018;9:1150. doi: 10.3389/fphar.2018.01150

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Some mechanisms of berberine influence on tumor growth.

Download (50KB)
3. Fig. 2. Proapoptotic effect of berberine. APAF-1, apoptotic protease-activating factor 1; Bak, BCL-2 homologous antagonist/killer; Bax, X-associated with BCL2; BCL-2, B-cell lymphoma protein family; BCL-XL, BCL-2 homolog; BIM, BCL-2-like protein 11; Ca2+, calcium ion; ER, endoplasmic reticulum; JNK, c-Jun N-terminal kinase; MMP, mitochondrial membrane potential; PUMA, p53-activated apoptosis modulator; ROS, reactive oxygen species; XAF1, XIAP-associated factor 1.

Download (83KB)

© 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».