评估慢性意识障碍患者的垂体结构变化、激素状态特征和中枢神经系统功能状态的实验室标记物

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

论证。意识觉醒是一种觉醒的状态,是对自我和环境的意识。意识障碍是损害意识的病理的结果。制定有效的、复杂的、个性化的、有助于急性创伤性脑损伤、缺氧后慢性意识障碍患者意识恢复的综合措施,是现代康复中最紧迫、最复杂的任务之一。

本研究的目的是研究慢性意识损害患者的脑垂体结构变化,血液中促性腺激素和褪黑素水平以及血液和脑脊液中脑损伤标志物,并对不同组别患者根据意识受损程度的上述指标水平进行分析。

材料与方法。对61例患者进行了检查。根据意识水平的不同,他们被分为三组:在有反应性觉醒综合症的植物人状态下—24个病人;处于最小意识状态“是”反应—24个病人,处于最小意识状态 “不是”反应—13个病人。对患者行蝶鞍交叉区磁共振成像;测定血清中促卵泡激素、促黄体生成素、褪黑素水平及尿中6-硫氧基褪黑素水平;测定血清和脑脊液中脑源性神经营养因子(BDNF)、细胞凋亡抗原(Apo-1)、Fas-L、谷氨酸、S100水平。

结果。对年龄在15至61岁的患者进行检查。意识方面的患者在年龄和检查时慢性意识损害的持续时间上是相同的。无论意识水平如何,患者脑下垂体的体积没有差异。血清褪黑素水平及尿褪黑素代谢物水平在不同意识水平组间无显著差异。54.5%的患者在凌晨3点出现褪黑素分泌高峰,可视为意识进一步恢复的良好预后标志。34%的患者发现促性腺功能不全,其余患者发现正常促性腺功能不全。低意识状态患者血清Apo-1和脑源性神经营养因子(BDNF—brain-derived neurotrophic factor)水平明显高于植物人状态/反应性觉醒综合征患者。植物人状态/反应性觉醒综合征的妇女脑脊液中的谷氨酸水平明显低于最低意识状态的病人。

结论。对慢性意识受损患者的进一步深入检查和数据积累,可能使我们能够识别预测预后的高信息指标,以及开发这类患者意识康复的新有效方法。

作者简介

Ekaterina Kondratyeva

Polenov Neurosurgical Institute, Almazov National Medical Research Center

Email: eak2003@mail.ru
ORCID iD: 0000-0001-6362-6543
SPIN 代码: 6966-3270
Scopus 作者 ID: 57191545581

MD, Dr. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

Alina Ivanova

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

编辑信件的主要联系方式.
Email: ivanova_ao93@mail.ru
ORCID iD: 0000-0003-0792-3337
SPIN 代码: 5573-6990
Scopus 作者 ID: 1045544
Researcher ID: AAL-4500-2020

MD

俄罗斯联邦, Saint Petersburg

Maria Yarmolinskaya

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott; North-Western State Medical University named after I.I. Mechnikov

Email: m.yarmolinskaya@gmail.com
ORCID iD: 0000-0002-6551-4147
SPIN 代码: 3686-3605
Scopus 作者 ID: 7801562649
Researcher ID: P-2183-2014

MD, Dr. Sci. (Med.), Professor, Professor of the Russian Academy of Sciences

俄罗斯联邦, Saint Petersburg

Elena Potyomkina

Polenov Neurosurgical Institute, Almazov National Medical Research Center

Email: potemkina25@rambler.ru
ORCID iD: 0000-0003-0449-9163
SPIN 代码: 1422-2553
Scopus 作者 ID: 703392

MD, Dr. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

Natalya Dryagina

Polenov Neurosurgical Institute, Almazov National Medical Research Center

Email: nvdryagina@mail.ru
ORCID iD: 0000-0001-8595-6666
SPIN 代码: 1916-2139
Scopus 作者 ID: 35773283500

MD, Cand. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

Natalya Zybina

Nikiforov Russian Center of Emergency and Radiation Medicine

Email: zybinan@inbox.ru
ORCID iD: 0000-0002-5422-2878
SPIN 代码: 5164-2969
Scopus 作者 ID: 97381

MD, Dr. Sci. (Med.), Professor

俄罗斯联邦, Saint Petersburg

Nelly Andreeva

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: nelly8352@yahoo.com
ORCID iD: 0000-0002-1928-1266
SPIN 代码: 3355-2646
Scopus 作者 ID: 1053801

MD

俄罗斯联邦, Saint Petersburg

Anatoly Kondratyev

Polenov Neurosurgical Institute, Almazov National Medical Research Center

Email: eak2003@mail.ru
ORCID iD: 0000-0002-7648-2208

MD, Dr. Sci. (Med.), Professor

俄罗斯联邦, Saint Petersburg

参考

  1. Posner JB, Saper CB, Schiff N, Plum F. Plum and Posner’s diagnosis of stupor and coma. 4th ed. Oxford: Oxford University Press; 2007. [cited 23 Aug 2021]. Available from: https://medicinainternaelsalvador.com/wp-content/uploads/2018/10/Plum-and-Posners-Diagnosis-of-Stupor-and-Coma.pdf
  2. Jennett B. Thirty years of the vegetative state: clinical, ethical and legal problems. Prog Brain Res. 2005;150:537−543. doi: 10.1016/S0079-6123(05)50037-2
  3. Bakulin IS, Kremneva EI, Kuznecov AV, et al. Hronicheskie narusheniya soznaniya. Ed. by MA Piradov. 2nd ed. Moscow: Goryachaya liniya – Telekom; 2020. (In Russ.)
  4. Piradov MA, Suponeva NA, Voznyuk IA, et al. Russian workgroup on chronic disorders of consciousness. [Chronic disorders of consciousness: terminology and diagnostic criteria. The results of the first meeting of the Russian Working Group for Chronic Disorders of Consciousness]. Annals of clinical and experimental neurology. 2020;14(1):5–16. (In Russ.). doi: 10.25692/ACEN.2020.1.1
  5. Kondrat’eva EA, Voznyuk IA. Rukovodstvo po nevrologicheskomu osmotru pacienta s dlitel’nym narusheniem soznaniya. Saint Petersburg: Foliant, 2019. (In Russ.)
  6. Yoshimoto H, Uozumi T. Anterior pituitary function in the vegetative state. Neurol Med Chir (Tokyo). 1989;29(6):490−495. doi: 10.2176/nmc.29.490
  7. Klose M, Juul A, Struck J, et al. Acute and long-term pituitary insufficiency in traumatic brain injury: a prospective single-centre study. Clin Endocrinol (Oxf). 2007;67(4):598−606. doi: 10.1111/j.1365-2265.2007.02931.x
  8. Olivecrona Z, Dahlqvist P, Koskinen LO. Acute neuro-endocrine profile and prediction of outcome after severe brain injury. Scand J Trauma Resusc Emerg Med. 2013;21:33. doi: 10.1186/1757-7241-21-33
  9. Wagner J, Dusick JR, McArthur DL, et al. Acute gonadotroph and somatotroph hormonal suppression after traumatic brain injury. J Neurotrauma. 2010;27(6):1007−1019. doi: 10.1089/neu.2009.1092
  10. Tanriverdi F, Senyurek H, Unluhizarci K, et al. High risk of hypopituitarism after traumatic brain injury: a prospective investigation of anterior pituitary function in the acute phase and 12 months after trauma. J Clin Endocrinol Metab. 2006;91(6):2105−2111. doi: 10.1210/jc.2005-2476
  11. Kleindienst A, Brabant G, Bock C, et al. Neuroendocrine function following traumatic brain injury and subsequent intensive care treatment: a prospective longitudinal evaluation. J Neurotrauma. 2009;26(9):1435−1446. doi: 10.1089/neu.2008.0601
  12. Kondrat’eva EA, Dryagina NV, Ajbazova MI, et al. Prognoz iskhoda hronicheskogo narusheniya soznaniya na osnovanii opredeleniya nekotoryh gormonov i natrijureticheskogo peptida. Vestnik anesteziologii i reanimatologii. 2019;16(6):16−22. (In Russ.). doi: 10.21292/2078-5658-2019-16-6-16-22
  13. Ivanova AO, Kondrat’eva EA, YArmolinskaya MI, et al. Sluchai hronicheskogo narusheniya soznaniya v akushersko ginekologicheskoj praktike. ZHurnal akusherstva i zhenskih boleznej. 2020;69(6):31–42. (In Russ.). doi: 10.17816/JOWD69631-42
  14. Fernández A, Ordóñez R, Reiter RJ, et al. Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J Pineal Res. 2015;59(3):292–307. doi: 10.1111/jpi.12264
  15. Light and biological rhythms in man / ed. Wetterberg L. N.-Y.: Elsevier; 2014.
  16. Bekinschtein TA, Golombek DA, Simonetta SH, et al. Circadian rhythms in the vegetative state. Brain Inj. 2009;23(11):915–919. doi: 10.1080/02699050903283197
  17. Guaraldi P, Sancisi E, La Morgia C, et al. Nocturnal melatonin regulation in post-traumatic vegetative state: a possible role for melatonin supplementation? Chronobiol Int. 2014;31(5):741–745. doi: 10.3109/07420528.2014.901972
  18. Belkin AA, Alekseeva EV, Alasheev AM, et al. Ocenka cirkadnosti dlya prognoza iskhoda vegetativnogo sostoyaniya. Consilium Medicum. 2017;19(2):19–23. (In Russ.)
  19. Kanarskii M, Nekrasova J, Vitkovskaya S, et al. Effect of retinohypothalamic tract dysfunction on melatonin level in patients with chronic disorders of consciousness. Brain Sci. 2021;11(5):559. doi: 10.3390/brainsci11050559
  20. Gobert F, Luauté J, Raverot V, et al. Is circadian rhythmicity a prerequisite to coma recovery? Circadian recovery concomitant to cognitive improvement in two comatose patients. J Pineal Res. 2019;66(3):e12555. doi: 10.1111/jpi.12555
  21. Popova NK, Morozova MV. Nejrotroficheskij faktor mozga: vliyanie na geneticheski i epigeneticheski determinirovannye narusheniya povedeniya. Rossijskij fiziologicheskij zhurnal im. I.M. Sechenova. 2013;99(10):1125−1137. (In Russ.)
  22. Hung PL, Huang CC, Huang HM, et al. Thyroxin treatment protects against white matter injury in the immature brain via brain-derived neurotrophic factor. Stroke. 2013;44(8):2275−2283. doi: 10.1161/STROKEAHA.113.001552
  23. Numakawa T, Odaka H, Adachi N. Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases. Int J Mol Sci. 2018;19(11):3650. doi: 10.3390/ijms19113650
  24. Pearn ML, Hu Y, Niesman IR, et al. Propofol neurotoxicity is mediated by p75 neurotrophin receptor activation. Anesthesiology. 2012;116(2):352−361. doi: 10.1097/ALN.0b013e318242a48c
  25. Leitas C, Piñol-Ripoll G, Marfull P, et al. proBDNF is modified by advanced glycation end products in Alzheimer’s disease and causes neuronal apoptosis by inducing p75 neurotrophin receptor processing. Mol Brain. 2018;11(1):68. doi: 10.1186/s13041-018-0411-6
  26. Lanni C, Stanga S, Racchi M, Govoni S. The expanding universe of neurotrophic factors: therapeutic potential in aging and age-associated disorders. Curr Pharm Des. 2010;16(6):698−717. doi: 10.2174/138161210790883741
  27. Eyileten C, Sharif L, Wicik Z, et al. The relation of the brain-derived neurotrophic factor with microRNAs in neurodegenerative diseases and ischemic stroke. Mol Neurobiol. 2021;58(1):329−347. doi: 10.1007/s12035-020-02101-2
  28. Mohammadi A, Amooeian VG, Rashidi E. Dysfunction in brain-derived neurotrophic factor signaling pathway and susceptibility to schizophrenia, Parkinson’s and Alzheimer’s diseases. Curr Gene Ther. 2018;18(1):45−63. doi: 10.2174/1566523218666180302163029
  29. Betti L, Palego L, Unti E, et al. Brain-derived neurotrophic factor (BDNF) and serotonin transporter (SERT) in platelets of patients with mild huntington’s disease: Relationships with social cognition symptoms. Arch Ital Biol. 2018;156(1−2):27−39. doi: 10.12871/00039829201813
  30. Jiang L, Zhang H, Wang C, et al. Serum level of brain-derived neurotrophic factor in Parkinson’s disease: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2019;88:168−174. doi: 10.1016/j.pnpbp.2018.07.010
  31. Zhang H, Qian YL, Li C, et al. Brain-derived neurotrophic factor in the mesolimbic reward circuitry mediates nociception in chronic neuropathic pain. Biol Psychiatry. 2017;82(8):608−618. doi: 10.1016/j.biopsych.2017.02.1180
  32. Di Carlo P, Punzi G, Ursini G. Brain-derived neurotrophic factor and schizophrenia. Psychiatr Genet. 2019;29(5):200−210. doi: 10.1097/YPG.0000000000000237
  33. Koo JW, Chaudhury D, Han MH, Nestler EJ. Role of mesolimbic brain-derived neurotrophic factor in depression. Biol Psychiatry. 2019;86(10):738−748. doi: 10.1016/j.biopsych.2019.05.020
  34. Bayazit H, Dulgeroglu D, Selek S. Brain-derived neurotrophic factor and oxidative stress in cannabis dependence. Neuropsychobiology. 2020;79(3):186−190. doi: 10.1159/000504626
  35. Oyesiku NM, Evans CO, Houston S, et al. Regional changes in the expression of neurotrophic factors and their receptors following acute traumatic brain injury in the adult rat brain. Brain Res. 1999;833(2):161−172. doi: 10.1016/s0006-8993(99)01501-2
  36. Kobori N, Clifton GL, Dash P. Altered expression of novel genes in the cerebral cortex following experimental brain injury. Brain Res Mol Brain Res. 2002;104(2):148−158. doi: 10.1016/s0169-328x(02)00331-5
  37. Korley FK, Diaz-Arrastia R, Wu AH, et al. Circulating brain-derived neurotrophic factor has diagnostic and prognostic value in traumatic brain injury. J Neurotrauma. 2016;33(2):215−225. doi: 10.1089/neu.2015.3949
  38. Kalish H, Phillips TM. Analysis of neurotrophins in human serum by immunoaffinity capillary electrophoresis (ICE) following traumatic head injury. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878(2):194−200. doi: 10.1016/j.jchromb.2009.10.022
  39. Bagnato S, Galardi G, Ribaudo F, et al. Serum BDNF levels are reduced in patients with disorders of consciousness and are not modified by verticalization with robot-assisted lower-limb training. Neural Plast. 2020;2020:5608145. doi: 10.1155/2020/5608145
  40. Iazeva EG, Legostaeva LA, Bakulin IS, et al. Effect of neuromodulation on neurotrophic factors in patients with chronic disorders of consciousness. Bulletin of RSMU. 2020;(5):40−47. (In Russ.). doi: 10.24075/vrgmu.2020.056
  41. Lenzlinger PM, Marx A, Trentz O, et al. Prolonged intrathecal release of soluble Fas following severe traumatic brain injury in humans. J Neuroimmunol. 2002;122(1−2):167−174. doi: 10.1016/s0165-5728(01)00466-0
  42. Solodeev I, Meilik B, Volovitz I, et al. Fas-L promotes the stem cell potency of adipose-derived mesenchymal cells. Cell Death Dis. 2018;9(6):695. doi: 10.1038/s41419-018-0702-y
  43. Dorsett CR, McGuire JL, DePasquale EA, et al. Glutamate neurotransmission in rodent models of traumatic brain injury. J Neurotrauma. 2017;34(2):263−272. doi: 10.1089/neu.2015.4373
  44. Khatri N, Thakur M, Pareek V, et al. Oxidative stress: Major threat in traumatic brain injury. CNS Neurol Disord Drug Targets. 2018;17(9):689−695. doi: 10.2174/1871527317666180627120501
  45. O’Neil DA, Nicholas MA, Lajud N, et al. Preclinical models of traumatic brain injury: emerging role of glutamate in the pathophysiology of depression. Front Pharmacol. 2018;9:579. doi: 10.3389/fphar.2018.00579
  46. Yasen AL, Smith J, Christie AD. Glutamate and GABA concentrations following mild traumatic brain injury: a pilot study. J Neurophysiol. 2018;120(3):1318−1322. doi: 10.1152/jn.00896.2017
  47. Gonzalez LL, Garrie K, Turner MD. Role of S100 proteins in health and disease. Biochim Biophys Acta Mol Cell Res. 2020;1867(6):118677. doi: 10.1016/j.bbamcr.2020.118677
  48. Selinfreund RH, Barger SW, Pledger WJ, Van Eldik LJ. Neurotrophic protein S100 beta stimulates glial cell proliferation. Proc Natl Acad Sci USA. 1991;88(9):3554−3558. doi: 10.1073/pnas.88.9.3554
  49. Winningham-Major F, Staecker JL, Barger SW, et al. Neurite extension and neuronal survival activities of recombinant S100 beta proteins that differ in the content and position of cysteine residues. J Cell Biol. 1989;109(6 Pt 1):3063−3071. doi: 10.1083/jcb.109.6.3063
  50. Oris C, Pereira B, Durif J, et al. The biomarker S100B and mild traumatic brain injury: A meta-analysis. Pediatrics. 2018;141(6):e20180037. doi: 10.1542/peds.2018-0037
  51. Michetti F, Corvino V, Geloso MC, et al. The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. J Neurochem. 2012;120(5):644−659. doi: 10.1111/j.1471-4159.2011.07612.x
  52. Neher MD, Keene CN, Rich MC, et al. Serum biomarkers for traumatic brain injury. South Med J. 2014;107(4):248−255. doi: 10.1097/SMJ.0000000000000086
  53. Metting Z, Wilczak N, Rodiger LA, et al. GFAP and S100B in the acute phase of mild traumatic brain injury. Neurology. 2012;78(18):1428−1433. doi: 10.1212/WNL.0b013e318253d5c7

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eсо-Vector, 2021



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».