Hormonal status in women with respiratory viral infections during critical periods
- 作者: Vyrupaeva E.V.1, Semenova N.V.1, Kolesnikova L.I.1
-
隶属关系:
- Scientific Centre for Family Health and Human Reproduction Problems
- 期: 卷 73, 编号 4 (2024)
- 页面: 95-105
- 栏目: Reviews
- URL: https://ogarev-online.ru/jowd/article/view/268544
- DOI: https://doi.org/10.17816/JOWD626354
- ID: 268544
如何引用文章
详细
Pregnancy and menopause are critical periods in a woman’s life. Due to physiological changes in the neuroendocrine system regulation, susceptibility to respiratory viral infections increases in these periods, while affecting all organs and systems of the human body.
The aim of this review was to analyze the literature data on the effect of acute respiratory viral infections on neuroendocrine regulation in women during pregnancy and menopause. We reviewed full-text publications in the public domain from the PubMed, eLibrary.ru, and Google Scholar databases with a coverage period of more than twenty years (2000–2023).
Disruptions of the progesterone and estrogen production during infection with the influenza A (H1N1) and influenza B viruses have been shown in experimental studies. Hormonal status changes in pregnant women are detected during infection with the influenza A virus (H3N2) and depend on antiviral antibody titers and the presence of fetoplacental insufficiency. Pregnant women with COVID-19 may experience changes in the brain structure activities, as indicated by a high frequency of those in olfactory sensitivity and psychoemotional disorders. During menopause, infection with the SARS-CoV-2 virus leads to changes in the production of thyroxine, prolactin, estradiol, testosterone, cortisol, 17-hydroxyprogesterone, and dehydroepiandrosterone sulfate.
作者简介
Ekaterina Vyrupaeva
Scientific Centre for Family Health and Human Reproduction Problems
编辑信件的主要联系方式.
Email: goliafm@yandex.ru
ORCID iD: 0000-0001-7954-9570
SPIN 代码: 8360-9866
MD
俄罗斯联邦, IrkutskNatalya Semenova
Scientific Centre for Family Health and Human Reproduction Problems
Email: natkor_84@mail.ru
ORCID iD: 0000-0002-6512-1335
SPIN 代码: 6606-0160
Dr. Sci. (Biology)
俄罗斯联邦, IrkutskLubov Kolesnikova
Scientific Centre for Family Health and Human Reproduction Problems
Email: iphr@sbamsr.irk.ru
ORCID iD: 0000-0003-3354-2992
SPIN 代码: 1584-0281
MD, Dr. Sci. (Medicine), Professor, Academician of the Russian Academy of Sciences
俄罗斯联邦, Irkutsk参考
- Peretz J, Pekosz A, Lane AP, et al. Estrogenic compounds reduce influenza A virus replication in primary human nasal epithelial cells derived from female, but not male, donors. Am J Physiol Lung Cell Mol Physiol. 2016;310(5):415–425. doi: 10.1152/ajplung.00398.2015
- Belokriniczkaya TE, Shapovalov KG. Flu and pregnancy. Moscow: GEOTAR-Media, 2015. [cited 2024 Jan 1]. Режим доступа: https://www.studentlibrary.ru/book/ISBN9785970435946.html (In Russ.)
- Polyakov VM, Cherevikova IA, Myasishhev NA, et al. Cognitive and emotional impairments associated with COVID-19 (literature review). Acta Biomedica Scientifica. 2022;7(6):71–81. EDN: XGGBIB doi: 10.29413/ABS.2022-7.6.7
- Vyrupaeva EV, Semyonova NV, Rychkova LV, et al. Assessment of the general condition and quality of life of women of post-reproductive age after asymptomatic COVID-19 and 12 months after moderate COVID-19. Acta Biomedica Scientifica. 2022;7(5–1):77–85. EDN: XBDFEZ doi: 10.29413/ABS.2022-7.5-1.9
- Lanin DV, Zajceva NV, Dolgix OV. Assessment of the general condition and quality of life of women of post-reproductive age after asymptomatic COVID-19 and 12 months after moderate COVID-19. Advances in modern biology. 2011;131(2):122–134. EDN: NTRVIV
- Nikitin DA, Monaxov KN, Sokolovskij EV. The changes of the immune status and hormone profile in adolescents with atopic dermatitis. Bulletin of Dermatology and Venereology. 2000;1:22–24. (In Russ.)
- Engelmann F, Rivera A, Park B, et al. Impact of estrogen therapy on lymphocyte homeostasis and the response to seasonal influenza vaccine in post-menopausal women. PLoS One. 2016;11(2). doi: 10.1371/journal.pone.0149045
- Dantzer R. Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol Rev. 2018;98(1):477–504. doi: 10.1152/physrev.00039.2016
- Quatrini L, Vivier E, Ugolini S. Neuroendocrine regulation of innate lymphoid cells. Immunol Rev. 2018;286(1):120–136. doi: 10.1111/imr.12707
- Vila-Pérez D, Jordan-García I. Relative adrenal insufficiency in pediatric septic shock. J Pediatr Intensive Care. 2015;4(3):129–137. doi: 10.1055/s-0035-1559821
- Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017;17(4):233–247. doi: 10.1038/nri.2017.1
- Meduri GU, Chrousos GP. General adaptation in critical illness: glucocorticoid receptor-alpha master regulator of homeostatic corrections. Front Endocrinol (Lausanne). 2020;11:161. doi: 10.3389/fendo.2020.00161
- Calandra T, Bucala R. Macrophage Migration Inhibitory Factor (MIF): a glucocorticoid counter-regulator within the immune system. Crit Rev Immunol. 2017;37(2–6):359–370. doi: 10.1615/CritRevImmunol.v37.i2-6.90
- Montesinos MDM, Pellizas CG. Thyroid hormone action on innate immunity. Front Endocrinol (Lausanne). 2019;10:350. doi: 10.3389/fendo.2019.00350
- Skripchenko NV, Zheleznikova GF, Alekseeva LA, et al. Hormones and cytokines as biomarkers of severe infections in children. Infectious diseases. 2022;20(1):107–119. EDN: AZFPKE doi: 10.20953/1729-9225-2022-1-107-119
- Cervantes O, Cruz Talavera I, Every E, et al. Role of hormones in the pregnancy and sex-specific outcomes to infections with respiratory viruses. Immunol Rev. 2022;308(1):123–148. doi: 10.1111/imr.13078
- Sholoxov LF, Kolesnikova LI, Protopopova NV, et al. patterns of development of adaptive and disadaptive reactions of the body’s neuroendocrine regulation system in the dynamics of pregnancy in women with varying degrees of risk of developing perinatal pathology. Health. Medical ecology. Science. 2009;4–5(39–40):203–205. (In Russ.) EDN: KVDTTH
- Gülsah G, Arck PC. Sex, immunity and influenz. J Infect Dis. 2014;209(3):93–99. doi: 10.1093/infdis/jiu020
- Littauer EQ, Esser ES, Antao OQ, et al. H1N1 influenza virus infection results in adverse pregnancy outcomes by disrupting tissue-specific hormonal regulation. PLoS Pathogens. 2017;13(11). doi: 10.1371/journal.ppat.1006757
- Kim JC, Kim HM, Kang YM, et al. Severe pathogenesis of influenza B virus in pregnant mice. Virology. 2014;448:74–81. doi: 10.1016/j.virol.2013.10.001
- Gorikov IN, Lucenko MT, Andrievskaya IA. The change of hormonal status in women witn influenza virus a(h3n2) in the first trimester of pregnancy. Bulletin of Physiology and Pathology of Respiration. 2016;60:80–84. EDN: WDMVXN doi: 10.12737/20126
- Gorikov IN. Fetoplacentar insufficiency in pregnant women with influenza а(н3n2) during third trimester of gestation period. Bulletin of Physiology and Pathology of Respiration. 2007;24:15–19. EDN: HYRLNH
- Kosovceva AS, Bairova TA, Rychkova LV, et al. Smell and taste disorders in pregnant women with COVID-19. Acta Biomedica Scientifica. 2022;7(5–1):35–45. EDN: JWQUVY doi: 10.29413/ABS.2022-7.5-1.5
- Cherny`x NM, Nosulya EV, Kim IA. The sense of smell in endocrine disorders (a literature review). Russian Rhinology. 2015;23(2):57–61. EDN: UKQXJB doi: 10.17116/rosrino201523257-61
- Savovic S, Nincic D, Lemajic S, et al. Olfactory perception in women with physiologically altered hormonal status (during pregnancy and menopause). Med Pregl. 2002;55(9–10):380–383. doi: 10.2298/mpns0210380s
- Alimova XP, Voitova GA. He structural analysis of mental disorders in pregnant women with COVID-19 pneumonia. Obstetrics and Gynecology. 2023;5:100–107. EDN: UMMZVM doi: 10.18565/aig.2022.208
- Min W, Liu C, Yang Y, et al. Alterations in hypothalamic-pituitary-adrenal/thyroid (HPA/HPT) axes correlated with the clinical manifestations of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2012;39(1):206–211. doi: 10.1016/j.pnpbp.2012.06.017
- Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. 2006;8(4):383–395. doi: 10.31887/DCNS.2006.8.4/ssmith
- Chojnowska S, Ptaszyńska-Sarosiek I, Kępka A, et al. Salivary biomarkers of stress, anxiety and depression. J Clin Med. 2021;10(3):517. doi: 10.3390/jcm10030517
- Riis JL, Granger DA, Woo H, et al. Long-term associations between prenatal maternal cortisol and child neuroendocrine-immune regulation. Int J Behav Med. 2020;27(3):267–281. doi: 10.1007/s12529-019-09814-2
- Jara LJ, López-Zamora B, Ordoñez-González I, et al. The immune-neuroendocrine system in COVID-19, advanced age and rheumatic diseases. Autoimmun review. 2021;20(11). doi: 10.1016/j.autrev.2021.102946
- Castelo-Branco C, Soveral I. The immune system and aging: a review. Gynecol Endocrinol. 2014;30(1):16–22. doi: 10.3109/09513590.2013.852531
- Gameiro C, Romao F. Changes in the immune system during menopause and aging. Front Biosci (Elite Ed). 2010;2(4):1299–1303. doi: 10.2741/e190
- Gersh F, Lavie CJ, O’Keefe JH. Menopause status and coronavirus disease 2019 (COVID-19). Clin Infect Dis. 2021;73(9):2825–2826. doi: 10.1093/cid/ciaa1447
- Lobo RA, Pickar JH, Stevenson JC, et al. Back to the future: hormone replacement therapy as part of a prevention strategy for women at the onset of menopause. Atherosclerosis. 2016;254:282–290. doi: 10.1016/j.atherosclerosis.2016.10.005
- Huang B, Cai Y, Li N, et al. Sex-based clinical and immunological differences in COVID-19. BMC Infect Dis. 2021;21(1):647. doi: 10.1186/s12879-021-06313-2
- Rocca WA, Gazzuola Rocca L, Smith CY et al. Loss of Ovarian Hormones and Accelerated Somatic and Mental Aging. Physiology (Bethesda). 2018;33(6):374–383. doi: 10.1152/physiol.00024.2018
- Marchenkova LA, Makarova EV. Characteristics of COVID-19 in peri- and postmenopausal women. Role of hormone replacement therapy. Problems of Gynecology, Obstetrics and Perinatology. 2022;21(1):85–90. EDN: ITYCVZ doi: 10.20953/1726-1678-2022-1-85-90
- Ding T, Zhang Z, Wang T, et al. Potential influence of menstrual status and sex hormones on female SARS-CoV-2 infection: a crosssectional study from multicentre in Wuhan, China. Clin Infect Dis. 2021;72(9):240–248. doi: 10.1093/cid/ciaa1022
- Semyonova NV, Vyrupaeva EV, Kolesnikov SI, et al. Neuroendocrine changes among 45–60 years old women with COVID-19 and 12 months after the disease. Advances in Gerontology. 2023;36(4):477–483. EDN: MUZKMY doi: 10.34922/AE.2023.36.4.004
- Wei L, Sun S, Zhang J. Endocrine cells of the adenohypophysis in severe acute respiratory syndrome (SARS). Biochem Cell Biol. 2010;88(4):723–730. doi: 10.1139/O10-022
- Hadisi N, Abedi H, Shokoohi M., et al. COVID-19 and endocrine system: a cross-sectional study on 60 patients with endocrine abnormality. Cell J. 2022;24(4):182–187. doi: 10.22074/cellj.2022.8079
- Pal R, Banerjee M. COVID-19 and the endocrine system: exploring the unexplored. J Endocrinol Invest. 2020;43(7):1027–1031. doi: 10.1007/s40618-020-01276-8
- Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020;6(31):2–5. doi: 10.1126/sciadv.abc5801
- Stein SR, Ramelli SC, Grazioli A., et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature. 2022;612(7941):758–763. doi: 10.1038/s41586-022-05542-y
- Mezzulo M, Gambineri A, Dalmazi GD. et al. Steroid reference intervals in women: influence of menopause, age and metabolism. Eur J Endocrinol. 2021;184(3):395–407. doi: 10.1530/EJE-20-1147
- Hashim M, Athar S, Gaba WH. New onset adrenal insufficiency in a patient with COVID-19. BMJ case reports. 2021;14(1). doi: 10.1136/bcr-2020-237690
- Semyonova NV, Vyrupaeva EV, Kolesnikov SI, et al. Endothelin level in climacteric women with comorbidity of the acute phase middle severity COVID-19 with arterial hypertension and type 2 diabetes mellitus. Bulletin of Experimental Biology and Medicine. 2023;176(12):741–745. EDN: WQDDXS doi: 10.47056/0365-9615-2023-176-12-741-745
- Semenova NV, Rychkova LV, Darenskaya MA, et al. Superoxide dismutase activity in male and female patients of different age with moderate COVID-19. Bulletin of Experimental Biology and Medicine. 2022;173(1):51–53. doi: 10.1007/s10517-022-05491-6
- Lazartigues E, Qadir MMF, Mauvais-Jarvis F. Endocrine significance of SARS-CoV-2’s reliance on ACE2. Endocrinology. 2020;161(9). doi: 10.1210/endocr/bqaa108
- Auci D, Kaler L, Subramanian S. et al. A new orally bioavailable synthetic androstene inhibits collagen-induced arthritis in the mouse: androstene hormones as regulators of regulatory T cells. Ann NY Acad Sci. 2007;1110:630–640. doi: 10.1196/annals.1423.066
- Nasonov EL. Immunopathology and immunopharmacotherapy of coronavirus disease 2019 (COVID-19): focus on interleukin. Rheumatology Science and Practice. 2020;58(3):245–261. EDN: FFIJMY doi: 10.14412/1995-4484-2020-245-261
- Timofeeva LA, Aleksandrov YuK, Aleshina TN, et al. Subacute thyroiditis associated with COVID-19. Russian Electronic Journal of Radiology. 2021;11(3):15–24. EDN: RPZLKX doi: 10.21569/2222-7415-2021-11-3-15-24
- Klimchuk AV, Beloglazov VA, Yatskov IA, et al. Endocrine disorders in the background of COVID-19 and postcovid syndrome. Obesity and metabolism. 2022;19(2):206–212. EDN: FSBOYF doi: 10.14341/omet12853
- Zadumina DN, Skvorcov VV, Shtonda DA. Impact of COVID-19 on the endocrine system. Lechashchij Vrach. 2023;3(26):7–13. EDN: ZMACKK doi: 10.51793/OS.2023.26.3.001
- Semyonova NV, Kolesnikov SI, Vyrupaeva EV, et al. Thyroid status and TNF-alpha in post-reproductive women with COVID-19 and 12 months after the disease. Acta Biomedica Scientifica. 2023;8(2):33–42. EDN: CLSVJE doi: 10.29413/ABS.2023-8.2.4
补充文件
