Грудное вскармливание в профилактике долгосрочных последствий нервно-психической патологии у потомства при гестационном сахарном диабете
- Авторы: Евсюкова И.И.1
-
Учреждения:
- Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта
- Выпуск: Том 73, № 4 (2024)
- Страницы: 107-118
- Раздел: Научные обзоры
- URL: https://ogarev-online.ru/jowd/article/view/268545
- DOI: https://doi.org/10.17816/JOWD631782
- ID: 268545
Цитировать
Аннотация
В обзоре обобщены современные представления о гестационном сахарном диабете как независимом факторе риска развития долгосрочных нервно-психических заболеваний у потомства и механизмах программирования этих заболеваний при данном осложнении беременности в отсутствие защитной роли материнского мелатонина в результате хронодеструкции. Представлены данные литературы о составе грудного молока и участии его эндогенного мелатонина, микроРНК, длинных некодирующих РНК, стволовых клеток и микробиома в репрограммировании эпигенетических нарушений в результате неблагоприятных воздействий в антенатальном периоде для снижения вероятности развития нервно-психической патологии в более позднем возрасте. Подчеркнуто, что исключительно грудное вскармливание в течение первых 6 мес. жизни и позже наряду с прикормом в возрасте до 2 лет является физиологичным и непревзойденным методом профилактики долгосрочных последствий нарушения развития мозга потомства при гестационном сахарном диабете.
Полный текст
Открыть статью на сайте журналаОб авторах
Инна Ивановна Евсюкова
Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта
Автор, ответственный за переписку.
Email: eevs@yandex.ru
ORCID iD: 0000-0003-4456-2198
SPIN-код: 4444-4567
д-р мед. наук, профессор
Россия, Санкт-ПетербургСписок литературы
- Rodolaki K., Pergialiotis V., Iakovidou N., et al. The impact of maternal diabetes on the future health and neurodevelopment of the offspring: a review of the evidence // Front Endocrinol. 2023. Vol. 14. doi: 10.3389/fendo.2023.112562
- Евсюкова И.И. Гестационный сахарный диабет — фактор риска развития нервно-психической патологии у потомства // Журнал акушерства и женских болезней. 2024. Т. 73, № 1. С. 101–111. (In Russ.) EDN: DSDFSC doi: 10.17816/JOWD62420
- Nahum Sacks K., Friger M., Shoham-Vardi I., et al. Prenatal exposure to gestational diabetes mellitus as an independent risk factor for long-term neuropsychiatric morbidity of the offspring //Am J Obstet Gynecol. 2016. Vol. 215, N 3. P. 380.e1–380.e7. doi: 10.1016/j.ajog.2016.03.030
- Cai S., Qiu A., Broekman B.F., et al. The influence of gestational diabetes on neurodevelopment of children in the first two years of life: a prospective study // PLoS ONE. 2016. Vol. 11, N 9. doi: 10.1371/journal.pone.0162113
- Никитина И.Л., Конопля И.С., Полянская А.А., и др. Характеристика физического и психомоторного развития детей, рожденных от матерей с гестационным сахарным диабетом // Медицинский совет. 2017. № 9. C. 14–20. EDN: ZCIRJX doi: 10.21518/2079-701X-2017-9-14-20
- Alves J.M., Smith A., Chow T., et al. Prenatal exposure to gestational diabetes mellitus is associated with mental health outcomes and physical activity has a modifying role // Res Square. 2023. Vol. 29. doi: 10.21203/rs.3.rs-3290222/v1
- Zhao L., Li X., Liu G., et al. The association of maternal diabetes with attention deficit and hyperactivity disorder in offspring: a meta-analysis // Neuropsychiatr Dis Treat. 2019. Vol. 15. P. 675–684. doi: 10.2147/NDT.S189200
- Wan H., Zhang C., Li H., et al. Association of maternal diabetes with autism spectrum disorders in offspring // Medicine. 2018. Vol. 97, N 2. doi: 10.1097/MD.0000000000009438
- Silva R.N.A., Yu Y., Liew Z., et al. Associations of maternal diabetes during pregnancy with psychiatric disorders in offspring during the first 4 decades of life in a population-based danish birth cohort // JAMA Netw Open. 2021. Vol. 4, N 10. doi: 10.1001/jamanetworkopen.2021.28005
- Kong L., Nilsson I.A., Brismar K., et al. Associations of different types of maternal diabetes and body mass index with offspring psychiatric disorders // JAMA Netw Open. 2020. Vol. 3, N 2. doi: 10.1001/jamanetworkopen.2019.20787
- Евсюкова И.И. Молекулярные механизмы функционирования системы «мать – плацента – плод» при ожирении и гестационном сахарном диабете // Молекулярная медицина. 2020. Т. 18, № 1. С. 11–15. EDN: ORKJZD doi: 10.29296/24999490-2020-01-02
- Carrasco-Wonga I., Mollerb A., Giachinic F.R., et al. Placental structure in gestational diabetes mellitus // Biochim Biophys Acta Mol Basis Dis. 2020. Vol. 1866, N 2. doi: 10.1016/j.bbadis.2019.165535
- Bedell S., Hutson J., de Vrijer B., et al. Effects of maternal obesity and gestational diabetes mellitus on the placenta: current knowledgeand targets for therapeutic interventions // Curr Vasc Pharmacol. 2021. Vol. 19, N 2. P. 176–192. doi: 10.2174/1570161118666200616144512
- Piazza F.V., Segabinazi E., de Meireles A.L.F., et al. Severe uncontrolled maternal hyperglycemia induces microsomia and neurodevelopment delay accompanied by apoptosis, cellular survival, and neuroinflammatory deregulation in rat offspring hippocampus // Cell Mol Neurobiol. 2019. Vol. 39, N 3. P. 401–414. doi: 10.1007/s10571-019-00658-8
- Sulyok E., Farkas B., Bodis. J. Pathomechanisms of prenatally programmed adult diseases // Antioxidants. 2023. Vol. 12, N 7. P. 1354. doi: 10.3390/antiox12071354
- Valencia-Ortega J., Saucedo R., Sánchez-Rodríguez M.A., et al. Epigenetic alterations related to gestational diabetes mellitus // Int J Mol Sci. 2021. Vol. 22, N 17. P. 9462. doi: 10.3390/ijms22179462
- Elliott H.R., Sharp G.C., Relton C.L., et al. Epigenetics and gestational diabetes: a review of epigenetic epidemiology studies and their use to explore epigenetic mediation and improve prediction // Diabetologia. 2019. Vol. 62, N 12. P. 2171–2178. doi: 10.1007/s00125-019-05011-8
- Xu P., Dong S., Wu L., et al. Maternal and placental DNA methylation changes associated with the pathogenesis of gestational diabetes mellitus // Nutrients. 2023. Vol. 15, N 1. P. 70. doi: 10.3390/nu15010070
- Edwards P.D., Lavergne S.G., McCaw L.K., et al. Maternal effects in mammals: Broadening our understanding of offspring programming // Front Neuroendocrinol. 2021. Vol. 62. P. 100924. doi: 10.1016/j.yfrne.2021.100924
- Howe C.G., Cox B., Fore R., et al. Maternal gestational diabetes mellitus and newborn dna methylation: findings from the pregnancy and childhood epigenetics consortium // Diabetes Care. 2020. Vol. 43, N 1. P. 98–105. doi: 10.2337/dc19-0524
- Nobile S., Di Sipio Morgia. C., Vento G. Perinatal origins of adult disease and opportunities for health promotion: a narrative review // J Pers Med. 2022. Vol. 12, N 2. P. 157. doi: 10.3390/jpm12020157
- Aviel-Shekler K., Hamshawi Y., Sirhan W., et al. Gestational diabetes induces behavioral and brain gene transcription dysregulation in adult offspring // Transll Psychiatry. 2020. Vol. 10, N 1. P. 412. doi: 10.1038/s41398-020-01096-7
- Li L., Maire C.L., Bilenky M., et al. Epigenomic programming in early fetal brain development // Epigenomics. 2020. Vol. 12, N 12. P. 1053–1070. doi: 10.2217/epi-2019-0319
- Lehnen H., Zechner U., Haaf T. Epigenetics of gestational diabetes mellitus and offspring health: the time for action is in early stages of life // Mol Hum Reprod. 2013. Vol. 19, N 7. P. 415–422. doi: 10.1093/molehr/gat020
- Alba-Linares J.J., Pérez R.F., Tejedor J.R., et al. Maternal obesity and gestational diabetes reprogram the methylome of offspring beyond birth by inducing epigenetic signatures in metabolic and developmental pathways // Cardiovasc Diabetol. 2023. Vol. 22, N 1. P. 44. doi: 10.1186/s12933-023-01774-y
- Bale T.L. Epigenetic and transgenerational reprogramming of brain development // Nat Rev Neurosci. 2015. Vol. 16, N 6. P. 332–344. doi: 10.1038/nrn3818
- Méndez N., Corvalan F., Halabi D., et al. From gestational chronodisruption to noncommunicable diseases: Pathophysiological mechanisms of programming of adult diseases, and the potential therapeutic role of melatonin // J Pineal Res. 2023. Vol. 75, N 4. P. e12908. doi: 10.1111/jpi.12908
- Korkmaz A., Rosales-Corral S., Reiter R.J. Gene regulation by melatonin linked to epigenetic phenomena // Gene. 2012. Vol. 503, N 1. P. 1−11. doi: 10.1016/j.gene.2012.04.040
- Erren T.S., Reiter R.J. Melatonin: a universal time messenger // Neuro Endocrinol Lett. 2015. Vol. 36, N 3. P. 187−192.
- Cipolla-Neto J., do Amaral F.G. Melatonin as a hormone: new physiological and clinical insights // Endocr Rev. 2018. Vol. 39, N 6. P. 990−1028. doi: 10.1210/er.2018-00084
- Gomes P.R.L., Motta-Teixeira L.C., Gallo C.C., et al. Maternal pineal melatonin in gestation and lactation physiology, and in fetal development and programming // Gen Comp Endocrinol 2021. Vol. 300. P. 113633. doi: 10.1016/j.ygcen.2020.113633
- Astiz M., Oster H. Feto-maternal crosstalk in the development of the circadian clock system // Front Neurosci. 2021. Vol. 14. P. 631687. doi: 10.3389/fnins.2020.631687
- Varcoe T.J., Gatford K.L., Kennaway D.J. Maternal circadian rhythms and the programming of adult health and disease // Am J Physiol Regul Integr Comp Physiol. 2017. Vol. 314, N 2. P. 231–241. doi: 10.1152/ajpregu.00248.2017
- Torres-Farfan C., Cipolla Neto J., Herzog E.D. Editorial: decoding the fetal circadian system and its role in adult sickness and health: melatonin, a dark history // Front Endocrinol (Lausanne). 2020. Vol. 11. P. 380. doi: 10.3389/fendo.2020
- Motta-Teixeira L.C., Machado-Nils A.V., Battagello D.S., et al. The absence of maternal pineal melatonin rhythm during pregnancy and lactation impairs offspring physical growth, neurodevelopment, and behavior // Horm Behav. 2018. Vol. 105. P. 146–156. doi: 10.1016/j.yhbeh.2018.08.006
- Mendez N., Halabi D., Salazar-Petres E.R., et al. Maternal melatonin treatment rescuses endocrine, inflammatory, and transcriptional deregulation in the adult rat female offspring from gestational chronodistruption // Front Neurosci. 2022. Vol. 16. P. 1039977. doi: 10.3389/fnins.2022.1039977
- Vine T., Brown G.M., Frey B.N., et al. Melatonin use during pregnancy and lactation: a scoping review of human studies // Psychiatry. 2022. Vol. 44, N 3. P. 342–348. doi: 10.1590/1516-4446-2021-2156
- Kamfar W.W., Khraiwesh H.M., Ibrahim M.O., et al. Comprehensive review of melatonin as a promising nutritional and nutraceutical supplement // Heliyon. 2024. Vol. 10, N 2. P. e24266. doi: 10.1016/j.heliyon.2024.e24266
- Hansell J.A, Richter H.G, Camm E.J, et al. Maternal melatonin: effective intervention against developmental programming of cardiovascular dysfunction in adult offspring of complicated pregnancy // J Pineal Res. 2022. Vol. 72, N 1. P. e12766. doi: 10.1111/jpi.12766
- Pluta R., Furmaga-Jabłonska W., Januszewski S., et al. Melatonin: a potential candidate for the treatment of experimental and clinical perinatal asphyxia // Molecules. 2023. Vol. 28, N 3. P. 1105. doi: 10.3390/molecules28031105
- Häusler S., Robertson N.J., Golhen K., et al. Melatonin as a therapy for preterm brain injury: what is the evidence? // Antioxidants. 2023. Vol. 12, N 8. P. 1630. doi: 10.3390/antiox12081630
- Babaee A., Eftekhar Vaghefi S.H., Dehghani Soltani S., et al. Hippocampal astrocyte response to melatonin following neural damage induction in rats // Basic Clin Neuroscience. 2021. Vol. 12, N 2. P. 177–186. doi: 10.32598/bcn.12.2.986.1
- Hardeland R. Melatonin, Its metabolites and their interference with reactive nitrogen compounds // Molecules. 2021. Vol. 26, N 13. P. 4105. doi: 10.3390/molecules26134105
- Garofoli F., Franco V., Accorsi P., et al. Fate of melatonin orally administered in preterm newborns: Antioxidant performance and basis for neuroprotection // J Pineal Res. 2024. Vol. 76, N 1. P. e12932. doi: 10.1111/jpi.12932
- Chiurazzi M., Cozzolino M., Reinelt T., et al. Human milk and brain development in infants // Reprod Med. 2021. Vol. 2, N 2. P. 107–117. doi: 10.3390/reprodmed2020011
- Vizzari G., Morniroli D., Ceroni F., et al. Human milk, more than simple nourishment // Children (Basel). 2021. Vol. 8, N 10. P. 863. doi: 10.3390/children8100863
- Italianer M.F., Naninck E.F.G., Roelants J.A., et al. Circadian variation in human milk composition, a systematic review // Nutrients. 2020. Vol. 12, N 8. P. 2328. doi: 10.3390/nu12082328
- Gila-Díaz A., Herranz Carrillo G., Cañas S., et al. Influence of maternal age and gestational age on breast milk antioxidants during the first month of lactation // Nutrients. 2020. Vol. 12, N 9. P. 2569. doi: 10.3390/nu12092569
- Hahn-Holbrook J., Saxbe, D., Bixby C., et al. Human milk as “chrononutrition”: implications for child health and development // Pediatr Res. 2019. Vol. 85, N 7. P. 936–942. doi: 10.1038/s41390-019-0368-x
- Wong S.D., Wright Jr. K.P., Spencer R.L., et al. Development of the circadian system in early life: maternal and environmental factors // J Physiol Anthropol. 2022. Vol. 41, N 22. doi: 10.1186/s40101-022-00294-0
- Caba-Flores M.D., Ramos-Ligonio A., Camacho-Morales A., et al. Breast milk and the importance of chrononutrition // Front Nutr. 2022. Vol. 9. P. 867507. doi: 10.3389/fnut.2022.867507
- Pontes G.N., Cardoso E.C., Carneiro-Sampaio M.M.S., et al. Injury switches melatonin production source from endocrine (pineal) to paracrine (phagocytes) – melatonin in human colostrum and colostrum phagocytes // J Pineal Res. 2006. Vol. 41, N 2. P. 136–141. doi: 10.1111/j.1600-079X.2006.00345.x
- Bonmatí-Carrión M.Á., Rol M.A. Melatonin as a mediator of the gut microbiota-host interaction: implications for health and disease // Antioxidants (Basel). 2023. Vol. 13, N 1. P. 34. doi: 10.3390/antiox13010034
- Anderson G., Vaillancourt C., Maes M., et al. Breastfeeding and the gut-brain axis: Is there a role for melatonin? // Biomol Concepts. 2017. Vol. 8, N 3-4. P. 185–195. doi: 10.1515/bmc-2017-0009
- Nyárády K., Turai R., Funke S., et al. Effects of perinatal factors on sirtuin 3, 8-hydroxy-2’-deoxyguanosine, brain-derived neurotrophic factor and serotonin in cord blood and early breast milk: an observational study // Intern Breastfeeding J. 2020. Vol. 15, N 1. P. 57. doi: 10.1186/s13006-020-00301-z5-НТ
- Illnerova H., Buresova M., Presl J. Melatonin rhythm in human milk // J Clin Endocrinol Metab. 1993. Vol. 77, N 3. P. 838–841. doi: 10.1210/jcem.77.3.8370707
- Marshall A.M., Nommsen-Rivers L.A., Hernandez L.L., et al. Serotonin transport and metabolism in the mammary gland modulates secretory activation and involution // J Clin Endocrinol Metab. 2010. Vol. 95, N 2. P. 837–46. doi: 10.1210/jc.2009-1575
- Cubero J., Valero V., Sánchez J., et al. The circadian rhythm of tryptophan in breast milk affects the rhythms of 6-sulfatoxymelatonin and sleep in newborn // Neuro Endocrinol Lett. 2005. Vol. 26, N 6. P. 657–661.
- Katzer D., Pauli L., Mueller A., et al. Melatonin concentrations and antioxidative capacity of human breast milk according to gestational age and the time of day // J Hum Lact. 2016. Vol. 32, N 4. P. 105–110. doi: 10.1177/0890334415625217
- Sebastiani G., Navarro-Tapia E., Almeida-Toledano L., et al. Effects of antioxidant intake on fetal development and maternal/neonatal health during pregnancy // Antioxidants. 2022. Vol. 11, N 4. P. 648. doi: 10.3390/antiox11040648
- Chen C.C., Liu L., Ma F., et al. Elucidation of exosome migration across the blood–brain barrier model in vitro // Cell Mol Bioeng. 2016. Vol. 9, N 4. P. 509–529. doi: 10.1007/s12195-016-0458-3
- Qin Y., Shi W., Zhuang J., et al. Variations in melatonin levels in preterm and term human breast milk during the first month after delivery // Sci Rep. 2019. Vol. 9, N 1. P. 17984. doi: 10.1038/s41598-019-54530-2
- Aparici-Gonzalo S., Carrasco-García Á., Gombert M., et al. Melatonin content of human milk: the effect of mode of delivery // Breastfeed Med. 2020. Vol. 15, N 9. P. 589–594. doi: 10.1089/bfm.2020.0157
- Verduci E., Banderali G., Barberi S., et al. Epigenetic effects of human breast milk // Nutrients. 2014. Vol. 6, N 4. P. 1711–1724. doi: 10.3390/nu6041711
- Moody L., Chen H., Pan Y.X. Early-life nutritional programming of cognition – the fundamental role of epigenetic mechanisms in mediating the relation between early-life environment and learning and memory process // Adv Nutr. 2017. Vol. 8, N 2. P. 337–350. doi: 10.3945/an.116.014209
- Kramer M.S., Aboud F., Mironova E., et al. Breastfeeding and child cognitive development: New evidence from a large randomized trial // Arch Gen Psychiatry. 2008. Vol. 65, N 5. P. 578–584. doi: 10.1001/archpsyc.65.5.578
- Anjos T., Altmäe S., Emmett P., et al. Nutrition and neurodevelopment in children: focus on nutrimenthe project // Eur J Nutr. 2013. Vol. 52, N 8. P. 1825–1842. doi: 10.1007/s00394-013-0560-4
- Alsaweed M., Hartmann P.E., Geddes D.T., et al. MicroRNAs in breastmilk and the lactating breast: potential immunoprotectors and developmental regulators for the infant and the mother // Int J Environ Res Public Health. 2015. Vol. 12, N 11. P. 3981–14020. doi: 10.3390/ijerph121113981
- Melnik B.C., Stremmel W., Weiskirchen R., et al. Exosome-derived microRNAs of human milk and their effects on infant health and development // Biomolecules. 2021. Vol. 11, N 6. P. 851. doi: 10.3390/biom11060851
- Tingö L., Ahlberg E., Johansson L., et al. Non-Coding RNAs in human breast milk: a systematic review // Front Immunol. 2021. Vol. 12. P. 725323. doi: 10.3389/fimmu.2021.725323
- Hatmal M.M., Al-Hatamleh M.A.I., Olaimat A.N., et al. Immunomodulatory properties of human breast milk: microrna contents and potential epigenetic effects // Biomedicines. 2022. Vol. 10, N 6. P. 1219. doi: 10.3390/biomedicines10061219
- Kersin S.G., Ozek E. Breast milk stem cells: are they magic bullets in neonatology? // Turk Arch Pediatr. 2021. Vol. 56, N 3. P. 187–191. doi: 10.5152/TurkArchPediatr.2021.21006
- Gialeli G., Panagopoulou O., Liosis G., et al. Potential epigenetic effects of human milk on infants’ neurodevelopment // Nutrients. 2023. Vol. 15, N 16. P. 3614. doi: 10.3390/nu15163614
- Vuong H.E. Intersections of the microbiome and early neurodevelopment // Int Rev Neurobiol. 2022. Vol. 167. P. 1–23. doi: 10.1016/bs.irn.2022.06.004
- Walsh C., Lane J.A., Van Sinderen D., et al. Human milk oligosaccharides: Shaping the infant gut microbiota and supporting health // J Funct Foods. 2020. Vol. 72, N 104074. doi: 10.1016/j.jff.2020.104074
- Lu J., Claud E.C. Connection between gut microbiome and brain development in preterm infants // Dev Psychobiol. 2019. Vol. 61, N 5. P. 739–751. doi: 10.1002/dev.21806
- Fan Y., McMath A.L., Donovan S.M. Review on the impact of milk oligosaccharides on the brain and neurocognitive development in early life // Nutrients. 2023. Vol. 15. P. 3743. doi: 10.3390/nu1517374377
- Berger P.K., Plows J.F., Jones R.B., et al. Human milk oligosaccharide 2’-fucosyllactose links feedings at 1 month to cognitive development at 24 months in infants of normal and overweight mothers // PLoS One. 2020. Vol. 15, N 2. P. e0228323. doi: 10.1371/journal.pone.0228323
- Campoy C., Escolano-Margarit M.V., Anjos T., et al. Omega 3 fatty acids on child growth, visual acuity and neurodevelopment // Br J Nutr. 2012. Vol. 107, N 2. P. 85–106. doi: 10.1017/S0007114512001493
- Suwaydi M.A., Lai C.T., Rea A., et al. Circadian variation in human milk hormones and macronutrients // Nutrients. 2023. Vol. 15, N 17. P. 3729. doi: 10.3390/nu15173729
- Peila C., Gazzolo D., Bertino E., et al. Influence of diabetes during pregnancy on human milk composition // Nutrients. 2020. Vol. 12, N 1. P. 185. doi: 10.3390/nu12010185
- Dugas C., Laberee L., Perron J., et al. Gestational diabetes mellitus, human milk composition, and infant growth // Breastfeed Med. 2023. Vol. 18, N 1. P. 14–22. doi: 10.1089/bfm.2022.0085
- Shah K.B., Chernausek S.D., Garman L.D., et al. Human milk exosomal microRNA: associations with maternal overweight/obesity and infant body composition at 1 month of life // Nutrients. 2021. Vol. 13, N 4. P. 1091. doi: 10.3390/nu13041091
- Azulay Chertok I.R., Haile Z.T., Eventov-Friedman S., et al. Influence of gestational diabetes mellitus on fatty acid concentrations in human colostrum // Nutrition. 2017. Vol. 36. P. 17–21. doi: 10.1016/j.nut.2016.12.001
- Klein K., Bancher-Todesca D., Graf T., et al. Concentration of free amino acids in human milk of women with gestational diabetes mellitus and healthy women // Breastfeed Med. 2013. Vol. 8, N 1. P. 111–115. doi: 10.1089/bfm.2011.0155
- Wen L., Wu Y., Yang Y., et al. Gestational diabetes mellitus changes the metabolomes of human colostrum, transition milk and mature milk // Med Sci Monit. 2019. Vol. 25. P. 6128–6152. doi: 10.12659/MSM.915827
- Suwaydi M.A., Zhou X., Perrella S.L., et al. The impact of gestational diabetes mellitus on human milk metabolic hormones: a systematic review // Nutrients. 2022. Vol. 14, N 17. P. 3620. doi: 10.3390/nu14173620
- Dou Y., Luo Y., Xing Y., et al. Human milk oligosaccharides variation in gestational diabetes mellitus mothers // Nutrients. 2023. Vol. 15, N 6. P. 1441. doi: 10.3390/nu15061441
- Kimberly N., Doughty A., Sarah N. Barriers and benefits to breastfeeding with gestational diabetes // Semin Perinatol. 2021. Vol. 45, N 2. P. 151385. doi: 10.1016/j.semperi.2020.151385
Дополнительные файлы
