根据静息功能磁共振成像数据分析多发性硬化症患者在接受综合神经康复治疗后大脑感觉区域的变化
- 作者: Kopteva Y.P.1,2, Ponomaryova S.D.1, Agafina A.S.1, Filin Y.A.3, Trufanov G.E.3, Sherbak S.G.1,2
-
隶属关系:
- City Hospital N 40 of the Resort District of St. Petersburg
- St. Petersburg State University
- Almazov National Medical Research Centre
- 期: 卷 43, 编号 3 (2024)
- 页面: 269-278
- 栏目: Original articles
- URL: https://ogarev-online.ru/RMMArep/article/view/275795
- DOI: https://doi.org/10.17816/rmmar634165
- ID: 275795
如何引用文章
全文:
详细
论证。多发性硬化症是导致年轻患者非创伤性残疾的主要原因之一。深入了解康复措施背后的神经可塑性过程,将有助于该病患者全面、有效的康复。
研究目的。评估多发性硬化症患者大脑连接体在综合康复措施下的变化。
材料和方法。这项前瞻性队列研究纳入了20名缓解期复发缓解型多发性硬化症患者(EDSS 1.5-6.5)。所有患者都接受了为期五周的综合住院神经康复治疗,其数量与个人康复需求相对应。为了评估连接体的变化,在三个时间点进行了静态功能磁共振成像(fMRIp):康复开始前、康复结束后和出院后一个月。统计分析使用 CONN 7 软件(基于 MathLab)进行。临床和神经病学检查包括使用功能测试的检查、通过问卷、确定康复前后的EDSS评分。
结果。共对 20 名患者进行了检查,其中包括三个对照点的 13 名患者。fMRIp 数据显示,左侧海马旁回和右侧枕叶外侧皮层之间以及右侧海马旁回和楔前皮层之间存在连接性减弱的簇群(p-FWE、簇群大小和质量的 p-FDR <0.05)。确定了连接性增强的集群:
- 左侧颞下回和左半球枕叶外侧皮层之间
- 左侧颞中回和右侧额叶之间
- 左侧颞叶极点和左半球外侧皮层之间(p-FWE,集群大小和质量的 p-FDR <0.05)。
其他足够大的集群显示出边缘统计学意义(集群大小和质量的单个调整后 p 值超过 0.05)。
结论。检测到的变化表明大脑结构的功能重组,负责复杂视觉信息的感知、执行控制系统的工作以及记忆和顺序行动计划的实施。
作者简介
Yuliya P. Kopteva
City Hospital N 40 of the Resort District of St. Petersburg; St. Petersburg State University
Email: koptevaup@ctmri.ru
ORCID iD: 0009-0001-1223-0255
SPIN 代码: 5552-2764
MD, doctor of the CT and MRI Room of the Radiology Department, Assistant at the Department of Postgraduate Medical Education of the Faculty of Medicine
俄罗斯联邦, St. Petersburg; St. PetersburgSvetlana D. Ponomaryova
City Hospital N 40 of the Resort District of St. Petersburg
Email: sd.ponomarevaa@gmail.com
ORCID iD: 0009-0000-5167-5110
SPIN 代码: 9251-4697
MD, Neurologist
俄罗斯联邦, St. PetersburgAlina S. Agafina
City Hospital N 40 of the Resort District of St. Petersburg
Email: a.agafina@mail.ru
ORCID iD: 0000-0003-2598-4440
MD, Cand. Sci. (medicine), neurologist, the head of the clinical and preclinical Research Department
俄罗斯联邦, St. PetersburgYana A. Filin
Almazov National Medical Research Centre
编辑信件的主要联系方式.
Email: filin_yana@mail.ru
ORCID iD: 0009-0009-0778-6396
俄罗斯联邦, St. Petersburg
Gennady E. Trufanov
Almazov National Medical Research Centre
Email: trufanovge@mail.ru
ORCID iD: 0000-0002-1611-5000
SPIN 代码: 3139-3581
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, St. PetersburgSergey G. Sherbak
City Hospital N 40 of the Resort District of St. Petersburg; St. Petersburg State University
Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5036-1259
SPIN 代码: 1537-9822
MD, Dr. Sci. (Medicine), Professor, Chief Medical Officer, the Head of the Department of Postgraduate Medical Education of the Faculty of Medicine
俄罗斯联邦, St. Petersburg; St. Petersburg参考
- Olek MJ. Multiple sclerosis. Ann Intern Med. 2021;174(6): ITC81–ITC96. doi: 10.7326/AITC202106150
- Haki M, Al-Biati HA, Al-Tameemi ZS, et al. Review of multiple sclerosis: Epidemiology, etiology, pathophysiology, and treatment. Medicine (Baltimore). 2024;103(8):e37297. doi: 10.1097/MD.0000000000037297
- Amin M, Hersh CM. Updates and advances in multiple sclerosis neurotherapeutics. Neurodegener Dis Manag. 2023;13(1):47–70. doi: 10.2217/nmt-2021-0058
- Lublin FD, Häring DA, Ganjgahi H, et al. How patients with multiple sclerosis acquire disability. Brain. 2022;145(9):3147–3161. doi: 10.1093/brain/awac016
- Salari N, Hayati A, Kazeminia M, et al. The effect of exercise on balance in patients with stroke, Parkinson, and multiple sclerosis: a systematic review and meta-analysis of clinical trials. Neurol Sci. 2022;43(1):167–185. doi: 10.1007/s10072-021-05689-y
- Centonze D, Leocani L, Feys P. Advances in physical rehabilitation of multiple sclerosis. Current Opinion in Neurology. 2020;33(3): 255–261. doi: 10.1097/wco.0000000000000816
- Sîrbu CA, Thompson DC, Plesa FC, et al. Neurorehabilitation in Multiple Sclerosis-A Review of Present Approaches and Future Considerations. J Clin Med. 2022;11(23):7003. doi: 10.3390/jcm11237003
- Guerra-Carrillo B, Mackey AP, Bunge SA. Resting-state fMRI: a window into human brain plasticity. Neuroscientist. 2014;20(5): 522–533. doi: 10.1177/1073858414524442
- Thiebaut de Schotten M, Forkel SJ. The emergent properties of the connected brain. Science. 2022;378(6619):505–510. doi: 10.1126/science.abq2591
- Rocca MA, Schoonheim MM, Valsasina P, et al. Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin. 2022;35:103076. doi: 10.1016/j.nicl.2022.103076
- Bučková B, Kopal J, Řasová K, et al. Open Access: The Effect of Neurorehabilitation on Multiple Sclerosis-Unlocking the Resting-State fMRI Data. Front Neurosci. 2021;15:662784. doi: 10.3389/fnins.2021.662784
- Carotenuto A, Valsasina P, Schoonheim MM, et al. Investigating Functional Network Abnormalities and Associations With Disability in Multiple Sclerosis. Neurology. 2022;99(22):e2517–e2530. doi: 10.1212/WNL.0000000000201264
- Chen MH, Wylie GR, Sandroff BM, et al. Neural mechanisms underlying state mental fatigue in multiple sclerosis: a pilot study. J Neurol. 2020;267(8):2372–2382. doi: 10.1007/s00415-020-09853-w
- Tao Y, XueSong Z, Xiao Y, et al. Association between symbol digit modalities test and regional cortex thickness in young adults with relapsing-remitting multiple sclerosis. Clin Neurol Neurosurg. 2021;207:106805. doi: 10.1016/j.clineuro.2021.106805
- Golde S, Heine J, Pöttgen J, et al. Distinct Functional Connectivity Signatures of Impaired Social Cognition in Multiple Sclerosis. Front Neurol. 2020;11:507. doi: 10.3389/fneur.2020.00507
- Cooray GK, Sundgren M, Brismar T. Mechanism of visual network dysfunction in relapsing-remitting multiple sclerosis and its relation to cognition. Clin Neurophysiol. 2020;131(2):361–367. doi: 10.1016/j.clinph.2019.10.029
- Huang Q, Lin D, Huang S, et al. Brain Functional Topology Alteration in Right Lateral Occipital Cortex Is Associated With Upper Extremity Motor Recovery. Front Neurol. 2022;13:780966. doi: 10.3389/fneur.2022.780966
- Carotenuto A, Cocozza S, Quarantelli M, et al. Pragmatic abilities in multiple sclerosis: The contribution of the temporo-parietal junction. Brain Lang. 2018;185:47–53. doi: 10.1016/j.bandl.2018.08.003
- Grothe M, Jochem K, Strauss S, et al. Performance in information processing speed is associated with parietal white matter tract integrity in multiple sclerosis. Front Neurol. 2022;13:982964. doi: 10.3389/fneur.2022.982964
- Toko M, Kitamura J, Ueno H, et al. Prospective Memory Deficits in Multiple Sclerosis: Voxel-based Morphometry and Double Inversion Recovery Analysis. Intern Med. 2021;60(1):39–46. doi: 10.2169/internalmedicine.5058-20
补充文件
