海军潜水员骨骼高压氧生成障碍性变化的放射学诊断
- 作者: Dimiev V.V.1, Zheleznyak I.S.1, Kireeva E.B.1, Mozhina M.N.1
-
隶属关系:
- Military Medical Academy
- 期: 卷 43, 编号 2 (2024)
- 页面: 203-211
- 栏目: Reviews
- URL: https://ogarev-online.ru/RMMArep/article/view/264713
- DOI: https://doi.org/10.17816/rmmar624213
- ID: 264713
如何引用文章
全文:
详细
全世界潜水任务的数量在稳步增加,在环境压力增加的情况下所做工作的复杂性也在稳步增长 此外,为了提高效率和扩大任务范围,潜水员在高压氧条件下的潜水强度、深度和停留时间也在不断增加。这些因素导致潜水病理数量的增加,包括压力异常发生的骨骼骨骼损伤。用于潜水员年度体检的X射线诊断方法并不总是能够检测到骨骼中的压力异常变化。此外,这种病症的临床表现也没有明显的特异性。因此,可以认为,迄今为止,这种病症在潜水员中的发生频率尚未得到可靠的确定。 本文专门对在环境压力增大条件下工作的专家进行骨骼高压氧致畸病变放射诊断的可能性进行了文献综述。文章重点介绍了对PubMed数据库和俄罗斯科学电子图书馆(eLIBRARY.RU和CYBERLENINKA.RU)中的英文和俄文出版物的审查结果。为了确定最佳的径向诊断方法,分析了骨骼中压力失调性退行性和坏死性变化发展的病因和发病机制,以及科学家在确定适当放射符号学方面的经验。考虑到致畸性骨病理学最严重的表现是致畸性(无菌性)骨坏死,我们研究了有关其临床和仪器诊断的文献资料。科学研究的方向之一是研究早期仪器诊断骨组织变化的可能性,特别是磁共振成像在诊断坏死性骨坏死中的可能性。此外,我们还分析了有关现代放射学方法的数据,这些方法很有可能成为对骨骼中的坏死性退行性病变进行筛查诊断的手段。
作者简介
Vil V. Dimiev
Military Medical Academy
编辑信件的主要联系方式.
Email: vmeda-nio@mail.ru
ORCID iD: 0009-0000-4049-2861
SPIN 代码: 8385-3547
俄罗斯联邦, Saint Petersburg
Igor S. Zheleznyak
Military Medical Academy
Email: vmeda-nio@mail.ru
ORCID iD: 0000-0001-7383-512X
SPIN 代码: 1450-5053
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Saint PetersburgElena B. Kireeva
Military Medical Academy
Email: vmeda-nio@mail.ru
ORCID iD: 0009-0000-4526-9802
SPIN 代码: 8954-1927
MD, Cand. Sci. (Medicine)
俄罗斯联邦, Saint PetersburgMaria N. Mozhina
Military Medical Academy
Email: vmeda-nio@mail.ru
ORCID iD: 0009-0008-1440-0503
俄罗斯联邦, Saint Petersburg
参考
- Tchumakov AV, Motasov GP, Neustroev AP, et al. Deep saturation dives: history of technology development, ways of research and perspectives of use. Ekologiya cheloveka. 2010;(2):17–21. (In Russ.) EDN: KYZPSH
- Tchumakov AV, Suhoroslova IE, Adaeva EN, et al. Consistent pattern and dynamics of osteoarticular changes as long-term aftereffect of deep-water saturation diving. Disaster Medicine. 2013;(1(81)): 17–22. (In Russ.) EDN: PXJCWN
- Vasilets VM, Zhelikhovsky SE, Sledkov AY, et al. Diving pathology. History and current situation. The Hospital. 2015;(2(12)):34–38. (In Russ.) EDN: TVXTST
- Arieli R. Gas micronuclei underlying decompression bubbles may explain the influence of oxygen enriched gases during decompression on bubble formation and endothelial function in self-contained underwater breathing apparatus diving. Croatian Medical Journal. 2019;60(4):388. doi: 10.3325/cmj.2019.60.388
- Uguen M, Pougnet R, Uguen A, et al. Dysbaric osteonecrosis among professional divers: A literature review. Undersea Hyperb Med. 2014;41(6):579–587. PMID: 25562949
- Byalik VE, Makarov MA, Byalik EI, et al. Avascular necrosis of bone tissue: Definition, epidemiology, types, risk factors, pathogenesis of the disease. Analytical review of the literature. Nauchno-Prakticheskaya Revmatologia. 2023;61(2):220–235 (In Russ.) EDN: RYSTKH doi: 10.47360/1995-4484-2023-220-235
- Gempp E, Louge P, Maistre S. Predictive factors of dysbaric osteonecrosis following musculoskeletal decompression sickness in recreational SCUBA divers. Joint Bone Spine. 2016;83(3):357–358. doi: 10.1016/j.jbspin.2015.03.010
- Wells PS, Anderson DR, Rodger M, et al. Evaluation of D-dimer in the diagnosis of suspected deep-vein thrombosis. N Engl J Med. 2003;349(13):1227–1235. doi: 10.1056/NEJMoa023153
- Miyanishi K, Kamo Y, Ihara H, et al. Risk factors for dysbaric osteonecrosis. Rheumatology (Oxford). 2006;45(7):855–858. doi: 10.1093/rheumatology/kel013
- Myasnikov AA, Efitsenko EV, Zverev DP, et al. Chronic decompression sickness and its diagnosis. Bulletin of the Russian Military Medical Academy. 2018;(4(64)):26–31. (In Russ.) EDN: YOIRIT
- Tsung-Tai L, Cheng-Chuan H, Yi-Chih H, et al. Utility of magnetic resonance spectroscopy and diffusion-weighted imaging for detecting changes in the femoral head in divers with hip pain at risk for dysbaric osteonecrosis. Quant Imaging Med Surg. 2022;12(1):43–52. doi: 10.21037/qims-21-148
- Bolte H, Koch A, Tetzlaff K, et al. Detection of dysbaric osteonecrosis in military divers using magnetic resonance imaging. Eur Radiol. 2005;15(2):368–375. doi: 10.1007/s00330-004-2452-8
- Svistov AS, Tchumakov AV, Motasov GP, et al. Radiological characteristics of the state of the musculoskeletal system of aquanauts. Bulletin of the Russian Military Medical Academy. 2005;(2):233–238. (In Russ.)
- Fondi C., Franchi A. Definition of bone necrosis by the. Clin Cases Miner Bone Metab. 2007;4(1):21–26.
- Sharareh B, Schwarzkopf R. Dysbaric osteonecrosis: a literature review of pathophysiology, clinical presentation, and management. Clin J Sport Med. 2015;25(2):153–161. doi: 10.1097/JSM.0000000000000093
- Konev VA, Tikhilov RM, Shubnyakov II, et al. Bioresorbable materials for bone defects substitution in patients with osteonecrosis of the femoral head. Traumatology and orthopedics of Russia. 2014;(3(73)):28–38. (In Russ.) EDN: SYSQMV doi: 10.21823/2311-2905-2014-0-3-28-38
- Korytkin АА, Zykin АА, Zakharova DV, et al. Bone grafting enhanced by platelet-rich plasma in treatment of avascular necrosis of femoral head. Traumatology and orthopedics of Russia. 2018;24(1):115–122. (In Russ.) EDN: YVGNQU doi: 10.21823/2311-2905-2018-24-1-115-122
- Zhang Y, Cao X, Li X, et al. Accuracy of MRI diagnosis of early osteonecrosis of the femoral head: a meta-analysis and systematic review. J Orthop Surg Res. 2018;13(1):167. doi: 10.1186/s13018-018-0836-8
- Akhtyamov IF, Zakirov RH, Lobashov VV. Current methods of visualization and diagnostic of avascular necrosis of hip. The Bulletin of Contemporary Clinical Medicine. 2014;7(S2):29–39. (In Russ.) EDN: VSHFGR
- Bryukhanov AV, Vasilyev Ayu. MR imaging of osteonecrosis. Medical imaging. 2009;(4):14–19. (In Russ.) EDN: KZGJIV
- Ge H, Wang Z, Zhang J. X-ray, digital tomographic fusion, CT, and MRI in early ischemic necrosis of the femoral head. Medicine. 2024;103(2): e36281. doi: 10.1097/MD.0000000000036281
- Hernigou P, Hernigou J, Scarlat M. Shoulder osteonecrosis: pathogenesis, causes, clinical evaluation, imaging, and classification. Orthop Surg. 2020;12(5):1340–1349. doi: 10.1111/os.12788
- Jitsuiki K, Kushida Y, Nishio R, et al. Gas in joints after diving: computed tomography may be useful for diagnosing decompression sickness. Wilderness Environ Med. 2021;32(1): 70–73. doi: 10.1016/j.wem.2020.09.006
- Siaffa R, Luciani M, Grandjean B, et al. Massive portal venous gas embolism after scuba diving. Diving Hyperb Med. 2019;49(1):61–63. doi: 10.28920/dhm49.1.61-63
- Guzman RA, Maruyama M, Moeinzadeh S, et al. The effect of genetically modified platelet-derived growth factor-BB over-expressing mesenchymal stromal cells during core decompression for steroidassociated osteonecrosis of the femoral head in rabbits. Stem Cell Res Ther. 2021;12(1):503. doi: 10.1186/s13287-021-02572-7
- Shinoda S, Hasegawa Y, Kawasaki S, et al. Magnetic resonance imaging of osteonecrosis in divers: comparison with plain radiographs. Skeletal Radiology. 1997;26(6):354–359. doi: 10.1007/s002560050247
- Bray JPT, Chouhan MD, Punwani S, et al. Fat fraction mapping using magnetic resonance imaging: insight into pathophysiology. Br J Radiol. 2018;91(1089):20170344. doi: 10.1259/bjr.20170344
补充文件
