Electron microscopy method in assessing the quality of cell cryopreservation

Cover Page

Cite item

Full Text

Abstract

During its existence, electron microscopy has become one of the reference methods for assessing the structural and functional state of cells, tissues and organs, and an extensive evidence base has been formed that allows its use in the creation and formation of a biobank. The selection of sources for the literature review was carried out using keywords based on publications over the past 20 years. The publications presented in the review were selected by searching the eLIBRARY.RU, PubMed and Scopus databases. Based on foreign and domestic experience in the work of biobanks, we can distinguish four areas that determine the effectiveness of the use of electron microscopy studies as a component of its work. Firstly, it is control of microbiological contamination of a biological sample. The effectiveness of electron microscopy in detecting contamination of a biological sample with bacteria, fungi and viruses is comparable to the effectiveness of classical microbiological techniques. Secondly, it is a diagnostic tool that allows you to identify or confirm the presence in a sample of a pathogenetic process that is of interest for biobanking: tumor growth, atherosclerotic vessel damage, etc. Thirdly, it is quality control for cryopreservation of samples. A wide range of morphological characteristics of the ultramicroscopic structure of cells and microanatomical formations makes it possible to characterize the quality of cryopreservation and quantify the degree of damage, which contributes to the unification and standardization of biobanking. Transmission electron microscopy is the most informative in this matter. Fourthly, this is the basis for digitalization of the results obtained and the formation of an interdisciplinary biobank repository, which allows the use of “big date” technologies for fundamental research. The compliance of the biobank profile with the economic, scientific and industrial characteristics of the infrastructure of the industry or region is of great importance. Electron microscopy data are successfully combined with the results of molecular studies, which allows the formation of interdisciplinary metadata databases suitable for interregional and interdisciplinary scientific integrations. The latter makes it possible to use electron microscopy data to solve a wide range of applied and interdisciplinary problems. The above allows us to consider scanning and transmission microscopy methods as one of the key methods in the development of biobanking in the region.

About the authors

Vladimir V. Chrishtop

Military Medical Academy

Email: chrishtop@mail.ru
ORCID iD: 0000-0002-9267-5800
SPIN-code: 3734-5479
Scopus Author ID: 57207690596
ResearcherId: J-3456-2017

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Maya I. Lobanova

Main Military-Medical Department

Email: nm35vmg@mail.ru
ORCID iD: 0009-0004-9291-3268
SPIN-code: 1229-7589
Scopus Author ID: 58307858963
ResearcherId: IAP-1352-2024
Russian Federation, Moscow

Dmitriy V. Ovchinnikov

Military Medical Academy

Email: izvestiavmeda@mail.ru
ORCID iD: 0000-0001-8408-5301
SPIN-code: 5437-3457
Scopus Author ID: 36185599800
ResearcherId: AGK-7796-2022

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Saint Petersburg

Alexey A. Semenov

Military Medical Academy

Author for correspondence.
Email: semfeodosia82@mail.ru
ORCID iD: 0000-0002-1977-7536
SPIN-code: 1147-3072
Scopus Author ID: 58307755100
ResearcherId: IAP-1241-2023

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Ruslan I. Glushakov

Military Medical Academy

Email: glushakoffruslan@yandex.ru
ORCID iD: 0000-0002-0161-5977
SPIN-code: 6860-8990
Scopus Author ID: 55263592100
ResearcherId: AGK-5791-2022

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

References

  1. Annaratone L, De Palma G, Bonizzi G, et al. Pathology and Biobanking Working Group. Basic principles of biobanking: from biological samples to precision medicine for patients. Virchows Arch. 2021;479(2):233–246. doi: 10.1007/s00428-021-03151-0
  2. Doludin YuV, Borisova AL, Pokrovskaya MS, et al. Modern best practices and recommendations for biobanking. Clinical laboratory diagnostics. 2019;64(12):769–776. (In Russ.) EDN: UPJHRW doi: 10.18821/0869-2084-2019-64-12-769-776
  3. Meshkov AN, Yartseva OYu, Borisova AL, et al. The concept of the national information platform of biobanks of the Russian Federation. Cardiovascular therapy and prevention. 2022;21(11):6–12. (In Russ.) EDN: ODHEXV doi: 10.15829/1728-8800-2022-3417
  4. Seidler D, Karlíková M, Topolčan O, et al. Establishing Biobanking in Medical Curricula-The Education Program “Precision Medicine International” (eduBRoTHER). Biopreserv Biobank. 2023;21(2):200–207. doi: 10.1089/bio.2022.0088
  5. Golyshev SA, Kazakov EP, Kireev II, et al. Soft X-ray microscopy in cell biology: current state, contribution and prospects. Acta Naturae (Russian version). 2023;15(4)32–43. (In Russ.) EDN: YFZJPP doi: 10.32607/actanaturae.26551
  6. Drapkina OM. Russian National Association of Biobanks and Biobanking Specialists — a tool for integrating Russian biobanks and increasing the efficiency of biomedical research. Cardiovascular Therapy and Prevention. 2020;19(6):131–133. (In Russ.) EDN: ULGKHX doi: 10.15829/1728-8800-2020-2757
  7. Borisova AL, Kopylova OV, Pokrovskaya MS, et al. Biobanking in the hospital of a multidisciplinary research medical center as a potential for a wide research range. Part I. Organizational and methodological aspects. Cardiovascular Therapy and Prevention. 2023;22(11): 57–63. (In Russ.) EDN: BGDIYT doi: 10.15829/1728-8800-2023-3749
  8. Kozlova VA, Metelskaya VA, Pokrovskaya MS, et al. Stability of serum biochemical markers during standard long-term storage and with a single thawing. Cardiovascular Therapy and Prevention. 2020;19(6):149–157. (In Russ.) EDN: CTRLRI doi: 10.15829/1728-8800-2020-2736
  9. Pokrovskaya MS, Borisova AL, Kondratskaya VA, et al. Approaches to automation of the preanalytical phase of large-scale research in the biobank of the National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Health of Russia. Cardiovascular Therapy and Prevention. 2022;21(11):71–78. (In Russ.) EDN: NZXXFL doi: 10.15829/1728-8800-2022-3404
  10. Kopylova OV, Ershova AI, Pokrovskaya MS, et al. Biobanking in the hospital of a multidisciplinary research medical center as a potential for a wide research range. Part II. Specifics and first results of developing a described collection of biomaterial. Cardiovascular Therapy and Prevention. 2023;22(11):64–73. (In Russ.) EDN: VFFYDN doi: 10.15829/1728-8800-2023-3799
  11. Samokhina IV, Sagakyants AB. Work within the COVID-19 pandemic — the experience of the biobank of the National Medical Research Center of Oncology. Cardiovascular Therapy and Prevention. 2020;19(6):184–190. (In Russ.) EDN: ZFFBJX doi: 10.15829/1728-8800-2020-2741
  12. Mikhailova AA, Nasykhova YuA, Muravyov AI, et al. On the way to creating a general glossary of biobanks of the Russian Federation. Cardiovascular Therapy and Prevention. 2020;19(6):134–148. (In Russ.) EDN: JLZTWL doi: 10.15829/1728-8800-2020-2710
  13. Curylofo-Zotti FA, Lorencetti-Silva F, de Almeida Coelho J, et al. Human teeth biobank: Microbiological analysis of the teeth storage solution. Microsc Res Tech. 2018;81(3):332–337. doi: 10.1002/jemt.22984
  14. Mora EM, Álvarez-Cubela S, Oltra E. Biobanking of Exosomes in the Era of Precision Medicine: Are We There Yet? Int J Mol Sci. 2015;17(1):13. doi: 10.3390/ijms17010013
  15. Arantes LG, Tonelli GSSS, Martins CF, Báo SN. Cellular Characterization and Effects of Cryoprotectant Solutions on the Viability of Fibroblasts from Three Brazilian Wild Cats. Biopreserv Biobank. 2021;19(1):11–18. doi: 10.1089/bio.2020.0059
  16. Sui Y, Fan Q, Wang B, et al. Ice-free cryopreservation of heart valve tissue: The effect of adding MitoQ to a VS83 formulation and its influence on mitochondrial dynamics. Cryobiology. 2018;81:153–159. doi: 10.1016/j.cryobiol.2018.01.008
  17. Keskin N, Erdogan C, Bucak MN, et al. Cryopreservation Effects on Ram Sperm Ultrastructure. Biopreserv Biobank. 2020;18(5): 441–448. doi: 10.1089/bio.2020.0056
  18. Bezerra LGP, Souza ALP, Silva HVR, et al. Ultrastructural description of fresh and frozen/thawed sperm derived from collared peccaries (Pecari tajacu Linnaeus, 1,758). Microsc Res Tech. 2018;81(11):1301–1309. doi: 10.1002/jemt.23138
  19. Mohammed AK, Khalil WA, Youssef HF, et al. Influence of adding zeolite loaded with different charges to semen extender on sperm quality in rabbits after cryopreservation. Cryobiology. 2021;103: 107–115. doi: 10.1016/j.cryobiol.2021.08.005
  20. Keros V, Rosenlund B, Hultenby K, et al. Optimizing cryopreservation of human testicular tissue: comparison of protocols with glycerol, propanediol and dimethylsulphoxide as cryoprotectants. Hum Reprod. 2005;20(6):1676–1687. doi: 10.1093/humrep/deh797
  21. Muchlisin ZA, Azizah MN. Influence of cryoprotectants on abnormality and motility of baung (Mystus nemurus) spermatozoa after long-term cryopreservation. Cryobiology. 2009;58(2):166–169. doi: 10.1016/j.cryobiol.2008.11.010
  22. Ismail AA, Abdel-Khalek AE, Khalil WA, El-Harairy MA. Influence of Adding Green Synthesized Gold Nanoparticles to Tris-Extender on Sperm Characteristics of Cryopreserved Goat Semen. Journal of Animal and Poultry Production. 2020;11(2):39–45. doi: 10.21608/jappmu.2020.78854
  23. Abdelnour SA, Hassan MAE, Mohammed AK, et al. The Effect of Adding Different Levels of Curcumin and Its Nanoparticles to Extender on Post-Thaw Quality of Cryopreserved Rabbit Sperm. Animals (Basel). 2020;10(9):1508. doi: 10.3390/ani10091508
  24. Keros V, Rosenlund B, Hultenby K, et al. Optimizing cryopreservation of human testicular tissue: comparison of protocols with glycerol, propanediol and dimethylsulphoxide as cryoprotectants. Hum Reprod. 2005;20(6):1676–1687. doi: 10.1093/humrep/deh797
  25. Magalhães R, Nugraha B, Pervaiz S, et al. Influence of cell culture configuration on the post-cryopreservation viability of primary rat hepatocytes. Biomaterials. 2012;33(3):829–836. doi: 10.1016/j.biomaterials.2011.10.015
  26. Shiloh H, Iancu TC, Sheinfeld M, Kraiem Z. The influence of cryopreservation on the ultrastructural morphology of human thyroid cells. Cryobiology. 1987;24(4):303–310. doi: 10.1016/0011-2240(87)90034-4
  27. Snijders MLH, Zajec M, Walter LAJ, et al. Cryo-Gel embedding compound for renal biopsy biobanking. Sci Rep. 2019;9(1)15250. doi: 10.1038/s41598-019-51962-8
  28. Pogozhykh D, Eicke D, Gryshkov O, et al. Towards Reduction or Substitution of Cytotoxic DMSO in Biobanking of Functional Bioengineered Megakaryocytes. Int J Mol Sci. 2020;21(20):7654. doi: 10.3390/ijms21207654
  29. Babel M, Mamilos A, Seitz S, et al. Compared DNA and RNA quality of breast cancer biobanking samples after long-term storage protocols in –80 °C and liquid nitrogen. Sci Rep. 2020;10(1):14404. doi: 10.1038/s41598-020-71441-9
  30. Skogseth H, Eikvik TM, Tvedt KE, et al. Can Drying Be an Alternative Tissue Preservation Method in Cancer Research Biobanking? Drying Technology. 2014;32(6):713–719. doi: 10.1080/07373937.2013.858262
  31. Burkert J, Krs O, Vojácek J, et al. Cryopreserved semilunar heart valve allografts: leaflet surface damage in scanning electron microscopy. Zentralbl Chir. 2008;133(4):367–373. doi: 10.1055/s-2008-1076872
  32. Pfitzner R, Barecka D, Pawlikowski M, et al. Influence of Cryopreservation on Structural, Chemical, and Immunoenzymatic Properties of Aortic Valve Allografts. Transplant Proc. 2018;50(7): 2195–2198. doi: 10.1016/j.transproceed.2018.04.025
  33. Smit FE, Bester D, van den Heever JJ, et al. Does prolonged post-mortem cold ischemic harvesting time influence cryopreserved pulmonary homograft tissue integrity? Cell Tissue Bank. 2015;16(4):531–544. doi: 10.1007/s10561-015-9500-2
  34. Yefimova M, Bere E, Neyroud AS, et al. Myelinosome-like vesicles in human seminal plasma: A cryo-electron microscopy study. Cryobiology. 2020;92:15–20. doi: 10.1016/j.cryobiol.2019.09.009
  35. Albero-González R, Munné-Collado J, Pijuan L, et al. Complementary value of electron microscopy and immunohistochemistry in the diagnosis of non-small cell lung cancer: A potential role for electron microscopy in the era of targeted therapy. Ultrastruct Pathol. 2019;43(6):237–247. doi: 10.1080/01913123.2019.1692118
  36. Zheng JJ, Hong BV, Agus J, et al. Alzheimer’s Disease Patients, Especially ApoE4 Carriers, Have Significantly Reduced High-density Lipoprotein Particle Size Revealed by Negative-stained Transmission Electron Microscopy. Alzheimer’s Dement. 2022;18:e063375. doi: 10.1002/alz.063375
  37. Amstislavsky S, Mokrousova V, Brusentsev E, et al. Influence of Cellular Lipids on Cryopreservation of Mammalian Oocytes and Preimplantation Embryos: A Review. Biopreserv Biobank. 2019;17(1): 76–83. doi: 10.1089/bio.2018.0039
  38. Blutke A, Wanke R. Sampling Strategies and Processing of Biobank Tissue Samples from Porcine Biomedical Models. J Vis Exp. 2018;(133):57276. doi: 10.3791/57276
  39. Albl B, Haesner S, Braun-Reichhart C, et al. Tissue Sampling Guides for Porcine Biomedical Models. Toxicol Pathol. 2016;44(3):414–420. doi: 10.1177/0192623316631023
  40. Gundersen HJG, Mirabile R, Brown D, Boyce RW. Stereological principles and sampling procedures for toxicologic pathologists. In: Haschek W.M., Rousseaux C.G., Wallig M.A., Bolon B., Ochoa R., eds. Haschek and Rousseaux´s Handbook of Toxicologic Pathology. London: Academic Press; 2013:215–286. ISBN: 9780124157590 doi: 10.1016/B978-0-12-415759-0.00008-X
  41. Dukhova NN, Samborsky SM, Grivtsova LYu, et al. Oncological biobank of the National Medical Research Center of Radiology. Eurasian Scientific Association. 2020;(8–3(66)):143–144. (In Russ.) EDN: FTDARW
  42. Epifanova EV. Public law regulation of the system of medical biobanks: problem statement. Legal Bulletin of the Kuban State University. 2022;(2):87–92. (In Russ.) EDN: UJLWKS doi: 10.31429/20785836-14-2-87-92
  43. Muruve DA, Mann MC, Chapman K, et al. The biobank for the molecular classification of kidney disease: research translation and precision medicine in nephrology. BMC Nephrol. 2017;18(1):252. doi: 10.1186/s12882-017-0669-4
  44. Ivchenko EV, Ovchinnikov DV. Organization of scientific work as the key to the successful development of military medicine. In: 3rd Asian-Pacific Congress on Military Medicine: materials of the congress. St. Petersburg: S.M. Kirov Military Medical Academy Publ. House; 2016:24–25. (In Russ.) EDN: YGCAGL
  45. Stienen GJM. Early adjustments in mitochondrial structure and function in skeletal muscle to high altitude: design and rationale of the first study from the Kilimanjaro Biobank. Biophys Rev. 2020;12(4):793–798. doi: 10.1007/s12551-020-00710-8
  46. Kopylova OV, Ershova AI, Pokrovskaya MS, et al. Population-nosological research biobank “NMITs TPM”: analysis of collections of biospecimens, principles of collecting and storing information. Cardiovascular Therapy and Prevention. 2021;20(8):176–190. (In Russ.) EDN: ULBPDV doi: 10.15829/1728-8800-2021-3119
  47. Blutke A, Renner S, Flenkenthaler F, et al. The Munich MIDY Pig Biobank — A unique resource for studying organ crosstalk in diabetes. Mol Metab. 2017;6(8):931–940. doi: 10.1016/j.molmet.2017.06.004
  48. Aleksandrov VN, Bolekhan VN, Buntovskaya AS, et al. Development of cell technology, molecular genetics and tissue engineering in S.M. Kirov military medical academy and military innovation technopolis “ERA”. Bulletin of the Russian Military Medical Academy. 2019;3(67):243–248. (In Russ.) EDN: XXCZGO
  49. de Boer P, Giepmans BN. State-of-the-art microscopy to understand islets of Langerhans: what to expect next? Immunol Cell Biol. 2021;99(5):509–520. doi: 10.1111/imcb.12450
  50. Bonnet-Serrano F, Diedisheim M, Mallone R, Larger E. Decreased α-cell mass and early structural alterations of the exocrine pancreas in patients with type 1 diabetes: An analysis based on the nPOD repository. PLoS One. 2018;13(1):e0191528. doi: 10.1371/journal.pone.0191528
  51. Tang X, Kusmartseva I, Kulkarni S, et al. Image-Based Machine Learning Algorithms for Disease Characterization in the Human Type 1 Diabetes Pancreas. Am J Pathol. 2021;191(3):454–462. doi: 10.1016/j.ajpath.2020.11.010
  52. de Boer P, Pirozzi NM, Wolters AHG, et al. Large-scale electron microscopy database for human type 1 diabetes. Nat Commun. 2020;11(1):2475. doi: 10.1038/s41467-020-16287-5

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Main areas of application of electron microscopy in biobanking

Download (68KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».