Персонализированное ведение хронической обструктивной болезни легких с использованием технологий искусственного интеллекта в первичном звене здравоохранения

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Хроническая обструктивная болезнь легких остается одной из ведущих причин заболеваемости и смертности в мире, оказывая значительное влияние на качество жизни пациентов и систему здравоохранения. Традиционные методы диагностики и лечения, включая спирометрию, клинические шкалы и визуализационные методы, обладают определенными ограничениями, связанными с необходимостью активного участия пациента, высокой стоимостью и трудностями в обеспечении длительного мониторинга. В последние годы технологии искусственного интеллекта, интегрированные с анализом физиологических сигналов, открыли новые возможности для персонализированного и динамического ведения хронической обструктивной болезни легких, особенно в амбулаторной и первичной медицинской практике. В обзоре рассмотрены современные достижения применения искусственного интеллекта в четырех ключевых областях: диагностике, классификации тяжести, прогнозировании обострений и терапевтических вмешательствах. Особое внимание уделено мультимодальному анализу физиологических сигналов — дыхательных шумов, насыщения крови кислородом, электромиографических и кардиореспираторных параметров. Показано, что интеграция этих данных с алгоритмами машинного и глубокого обучения позволяет повысить точность ранней диагностики, спрогнозировать обострения на доклинической стадии, оптимизировать терапевтические вмешательства и увеличить приверженность лечению. Несмотря на очевидные перспективы, сохраняются значительные барьеры для внедрения искусственного интеллекта в рутинную практику: фрагментированность и разнородность медицинских данных, ограниченная интерпретируемость сложных моделей, необходимость стандартизации протоколов сбора информации и проведения многоцентровых клинических исследований. Тем не менее интеграция интеллектуальных систем в работу врача общей практики может трансформировать стратегию ведения хронической обструктивной болезни легких, обеспечив переход от реактивного лечения к проактивному и персонализированному мониторингу, что в перспективе позволит снизить частоту обострений и улучшить качество жизни пациентов.

Об авторах

Алина Эдуардовна Сединкина

Тюменский государственный медицинский университет

Автор, ответственный за переписку.
Email: a_asedinkina@mail.ru
ORCID iD: 0009-0005-4514-7692
Россия, Тюмень

Регина Фанисовна Бикташева

Башкирский государственный медицинский университет

Email: regishka519@mail.ru
ORCID iD: 0009-0002-1444-4078
Россия, Уфа

Вазраил Хожбаудиевич Абастов

Северо-Кавказская государственная академия

Email: vz.abastov@mail.ru
ORCID iD: 0009-0000-5443-3002
Россия, Черкесск

Дарья Валерьевна Фомина

Кубанский государственный медицинский университет

Email: angiifomina@mail.ru
ORCID iD: 0009-0000-3918-2735
Россия, Краснодар

Анна Игоревна Федорова

Кубанский государственный медицинский университет

Email: mofyto@mail.ru
ORCID iD: 0009-0009-8681-2774
Россия, Краснодар

Андрей Михайлович Юков

Кубанский государственный медицинский университет

Email: maxjer85@gmail.com
ORCID iD: 0009-0001-9657-8696
Россия, Краснодар

Амина Робертовна Боташева

Северо-Кавказская государственная академия

Email: amina.botasheva.03@mail.ru
ORCID iD: 0009-0005-6153-6372
Россия, Черкесск

Нелли Константиновна Казарян

Кубанский государственный медицинский университет

Email: balykova.nelli@yandex.ru
ORCID iD: 0009-0001-0985-1915
Россия, Краснодар

Милана Андреевна Тищенко

Крымский федеральный университет имени В.И. Вернадского

Email: tish.mila@bk.ru
ORCID iD: 0009-0009-6804-1988
Россия, Симферополь

Алина Эдуардовна Григорян

Кубанский государственный медицинский университет

Email: Alina.Asryan11@yandex.ru
ORCID iD: 0009-0000-0803-0376
Россия, Краснодар

Елизавета Евгеньевна Панфилова

Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова

Email: lizapanfilova.05@list.ru
ORCID iD: 0009-0009-6763-970X
Россия, Санкт-Петербург

Марина Викторовна Колесник

Смоленская городская поликлиника

Email: marinkwe@yandex.ru
ORCID iD: 0009-0005-2776-972X

MD

Россия, Смоленск

Тамара Игоревна Маскаева

Бобровская районная больница

Email: maskaeva.tamara2016@yandex.ru
ORCID iD: 0009-0008-9328-7229

MD

Россия, Бобров

Список литературы

  1. Mathur S, Singh P. Chronic obstructive pulmonary disease: lifestyle impact. Int J Prev Med. 2024;15:67. doi: 10.4103/ijpvm.ijpvm_297_23 EDN: XGJPXZ
  2. De Ramón Fernández A, Ruiz Fernández D, Gilart Iglesias V, Marcos Jorquera D. Analyzing the use of artificial intelligence for the management of chronic obstructive pulmonary disease (COPD). Int J Med Inform. 2022;158:104640. doi: 10.1016/j.ijmedinf.2021.104640 EDN: IFBAFG
  3. Avdeev SN, Leshchenko IV, Aisanov ZR. New concept and algorithm for the management of patients with chronic obstructive pulmonary disease. Pulmonologiya. 2023;33(5):587–594. doi: 10.18093/0869-0189-2023-33-5-587-594 EDN: XWOLJE
  4. Avdeev SN. Pathologic physiology of exacerbations of chronic obstructive pulmonary disease. Messenger of Anesthesiology and Resuscitation. 2019;16(2):75–82. (In Russ.) doi: 10.21292/2078-5658-2019-16-2-75-82 EDN: ZIZXKP
  5. Avdeev SN, Leshchenko IV, Aisanov ZR. Chronic obstructive pulmonary disease (COPD 2024). Clinical guidelines (short version). Journal of Respiratory Medicine. 2025;1(2):5–16. doi: 10.17116/respmed202510215 EDN: HDSQWO
  6. Chuchalin AG, Avdeev SN, Aisanov ZR, et al. Federal guidelines on diagnosis and treatment of chronic obstructive pulmonary disease. Pulmonologiya. 2022;32(3):356–392. doi: 10.18093/0869-0189-2022-32-3-356-392 EDN: ANYVUN
  7. Acampora G, Cook DJ, Rashidi P, Vasilakos AV. A survey on ambient intelligence in health care. Proc IEEE Inst Electr Electron Eng. 2013;101(12):2470–2494. doi: 10.1109/JPROC.2013.2262913
  8. Aminizadeh S, Heidari A, Dehghan M, et al. Opportunities and challenges of artificial intelligence and distributed systems to improve the quality of healthcare service. Artif Intell Med. 2024;149:102779. doi: 10.1016/j.artmed.2024.102779 EDN: UQCECM
  9. Kaplan A, Cao H, FitzGerald JM, et al. Artificial intelligence/machine learning in respiratory medicine and potential role in asthma and COPD diagnosis. J Allergy Clin Immunol Pract. 2021;9(6):2255–2261. doi: 10.1016/j.jaip.2021.02.014 EDN: OVTMJU
  10. Song W, Han J, Deng S, et al. Joint energy-based model for semi-supervised respiratory sound classification: a method of insensitive to distribution mismatch. IEEE J Biomed Health Inform. 2025;29(2):1433–1443. doi: 10.1109/JBHI.2024.3480999
  11. Kucher AV, Khodus SV, Borzenko ES. Issues and challenges in the use of artificial intelligence in medicine. Bulletin Physiology and Pathology of Respiration. 2024;(94):135–140. doi: 10.36604/1998-5029-2024-94-135-140 EDN: IKKEXV
  12. Haider NS, Singh BK, Periyasamy R, Behera AK. Respiratory sound based classification of chronic obstructive pulmonary disease: a risk stratification approach in machine learning paradigm. J Med Syst. 2019;43(8):255. doi: 10.1007/s10916-019-1388-0 EDN: XEFMXK
  13. Levy J, Álvarez D, Del Campo F, Behar JA. Machine learning for nocturnal diagnosis of chronic obstructive pulmonary disease using digital oximetry biomarkers. Physiol Meas. 2021;42(5). doi: 10.1088/1361-6579/abf5ad EDN: DVIXPN
  14. Yin H, Wang K, Yang R, et al. A machine learning model for predicting acute exacerbation of in-home chronic obstructive pulmonary disease patients. Comput Methods Programs Biomed. 2024;246:108005. doi: 10.1016/j.cmpb.2023.108005 EDN: OSXNSI
  15. Wu CT, Wang SM, Su YE, et al. A precision health service for chronic diseases: development and cohort study using wearable device, machine learning, and deep learning. IEEE J Transl Eng Health Med. 2022;10:2700414. doi: 10.1109/JTEHM.2022.3207825
  16. Xie W, Fang Y, Yang G, et al. Transformer-based multi-modal data fusion method for COPD classification and physiological and biochemical indicators identification. Biomolecules. 2023;13(9):1391. doi: 10.3390/biom13091391 EDN: XFEMOX
  17. Merone M, Pedone C, Capasso G, et al. A decision support system for tele-monitoring copd-related worrisome events. IEEE J Biomed Health Inform. 2017;21(2):296–302. doi: 10.1109/JBHI.2017.2654682
  18. Gálvez-Barrón C, Pérez-López C, Villar-Álvarez F, et al. Machine learning for the development of diagnostic models of decompensated heart failure or exacerbation of chronic obstructive pulmonary disease. Sci Rep. 2023;13(1):12709. doi: 10.1038/s41598-023-39329-6 EDN: WDJJGW
  19. Zhang J, Sun K, Jagadeesh A, et al. The potential and pitfalls of using a large language model such as ChatGPT, GPT-4, or LLaMA as a clinical assistant. J Am Med Inform Assoc. 2024;31(9):1884–1891. doi: 10.1093/jamia/ocae184 EDN: YULMEJ
  20. Chamberlain DB, Kodgule R, Fletcher RR. A mobile platform for automated screening of asthma and chronic obstructive pulmonary disease. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:5192–5195. doi: 10.1109/EMBC.2016.7591897
  21. Roy A, Satija U, Karmakar S. Pulmo-TS2ONN: a novel triple scale self operational neural network for pulmonary disorder detection using respiratory sounds. IEEE Trans Instrum Meas. 2024;73:1–12. doi: 10.1109/TIM.2024.3378206
  22. Altan G, Kutlu Y, Allahverdi N. Deep learning on computerized analysis of chronic obstructive pulmonary disease. IEEE J Biomed Health Inform. 2019. doi: 10.1109/JBHI.2019.2931395 EDN: DHAQEO
  23. Davies HJ, Bachtiger P, Williams I, et al. Wearable in-ear PPG: detailed respiratory variations enable classification of COPD. IEEE Trans Biomed Eng. 2022;69(7):2390–2400. doi: 10.1109/TBME.2022.3145688 EDN: QBLSYE
  24. Kanwade AB, Sardey MP, Panwar SA, et al. Combined weighted feature extraction and deep learning approach for chronic obstructive pulmonary disease classification using electromyography. Int J Inf Technol. 2024;16(3):1485–1494. doi: 10.1007/s41870-023-01498-y EDN: OAIQVA
  25. Wang Q, Wang H, Wang L, Yu F. Diagnosis of chronic obstructive pulmonary disease based on transfer learning. IEEE Access. 2020;8:47370–47383. doi: 10.1109/access.2020.2979218 EDN: FRDXAD
  26. Tran-Anh D, Vu NH, Nguyen-Trong K, Pham C. Multi-task learning neural networks for breath sound detection and classification in pervasive healthcare. Pervasive Mob Comput. 2022;86:101685. doi: 10.1016/j.pmcj.2022.101685 EDN: LAINBS
  27. Li J, Wang C, Chen J, et al. Nandi Explainable CNN with fuzzy tree regularization for respiratory sound analysis. IEEE Trans Fuzzy Syst. 2022;30(6):1516–1528. doi: 10.1109/TFUZZ.2022.3144448
  28. Zhang Y, Xia T, Han J, et al. Towards open respiratory acoustic foundation models: pretraining and benchmarking. NeurIPS. 2024;37:27024–27055. doi: 10.48550/arXiv.2406.16148
  29. Kumar S, Bhagat V, Sahu P, et al. A novel multimodal framework for early diagnosis and classification of COPD based on CT scan images and multivariate pulmonary respiratory diseases. Comput Methods Programs Biomed. 2024;243:107911. doi: 10.1016/j.cmpb.2023.107911 EDN: YKKESM
  30. Rahman MJ, Nemati E, Rahman M, et al. Toward early severity assessment of obstructive lung disease using multi-modal wearable sensor data fusion during walking. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:5935–5938. doi: 10.1109/EMBC44109.2020.9176559
  31. Abineza C, Balas VE, Nsengiyumva P. A machine-learning-based prediction method for easy COPD classification based on pulse oximetry clinical use. JIFS. 2022;43(2):1683–1695. doi: 10.3233/JIFS-219270 EDN: HJLXPF
  32. Roy A, Satija U. A novel melspectrogram snippet representation learning framework for severity detection of chronic obstructive pulmonary diseases. IEEE Trans Instrum Meas. 2023;72:1–11. doi: 10.36227/techrxiv.21758660.v1
  33. Patel PJ, Diwan D, Patel KA, et al. Multi feature fusion for COPD classification using deep learning algorithms. JIST. 2024;12(4):780. doi: 10.62110/sciencein.jist.2024.v12.780 EDN: NERRYX
  34. Yin C, Udrescu M, Gupta G, et al. Fractional dynamics foster deep learning of copd stage prediction. Adv Sci (Weinh). 2023;10(12):e2203485. doi: 10.1002/advs.202203485 EDN: GBKJLS
  35. Shah SA, Velardo C, Farmer A, Tarassenko L. Exacerbations in chronic obstructive pulmonary disease: identification and prediction using a digital health system. J Med Internet Res. 2017;19(3):e69. doi: 10.2196/jmir.7207
  36. Jin Y, Zhang T, Cao Z, et al. Prediction indicators for acute exacerbations of chronic obstructive pulmonary disease by combining non-linear analyses and machine. In: 2018 IEEE International conference on bioinformatics and biomedicine (BIBM); Madrid; 2018. P. 2515–2521. doi: 10.1109/BIBM.2018.8621430
  37. Swaminathan S, Qirko K, Smith T, et al. A machine learning approach to triaging patients with chronic obstructive pulmonary disease. PLoS One. 2017;12(11):e0188532. doi: 10.1371/journal.pone.0188532
  38. Nallanthighal VS, Härmä A, Strik H. Detection of COPD exacerbation from speech: comparison of acoustic features and deep learning based speech breathing models. In: ICASSP 2022-2022 IEEE International conference on acoustics, speech and signal processing; Singapore; 2022. P. 9097–9101. doi: 10.1109/ICASSP43922.2022.9747785
  39. Kor CT, Li YR, Lin PR, et al. Explainable machine learning model for predicting first-time acute exacerbation in patients with chronic obstructive pulmonary disease. J Pers Med. 2022;12(2):228. doi: 10.3390/jpm12020228 EDN: MCKOYI
  40. Weng Y, Fang Y, Yan H, et al. Bayesian non-parametric classification with tree-based feature transformation for NIPPV efficacy prediction in COPD patients. IEEE Access. 2019;7:177774–177783. doi: 10.1109/ACCESS.2019.2958047
  41. Chouvarda I, Philip NY, Natsiavas P, et al. WELCOME – innovative integrated care platform using wearable sensing and smart cloud computing for COPD patients with comorbidities. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3180–3183. doi: 10.1109/EMBC.2014.6944298
  42. Xie W, Gaydecki P, Caress AL. An inhaler tracking system based on acoustic analysis: Hardware and software. IEEE Trans Instrum Meas. 2019;68(11):4472–4480. doi: 10.1109/TIM.2018.2886978
  43. Ali HAEM, Al-Adl AS. Electrophysiological biomarkers of central nervous system affection in cases of chronic obstructive pulmonary disease (COPD). Egypt J Neurol Psychiat Neurosurg. 2021;57(1):74. doi: 10.1186/s41983-021-00311-6 EDN: ZXAHQN
  44. Bliznuks D, Cizovs J, Freimanis D, et al. Approaching automated COPD treatment based on Markov decision process. In: 2023 IEEE 64th International scientific conference on information technology and management science of Riga technical university (ITMS); Riga; 2023. P. 1–5. doi: 10.1109/ITMS59786.2023.10317773
  45. Shuvo SB, Ali SN, Swapnil SI, et al. A lightweight CNN model for detecting respiratory diseases from lung auscultation sounds using EMD-CWT-based hybrid scalogram. IEEE J Biomed Health Inform. 2021;25(7):2595–2603. doi: 10.1109/JBHI.2020.3048006 EDN: MTQDTQ
  46. Zafari H, Langlois S, Zulkernine F, et al. Predicting chronic obstructive pulmonary disease from emr data. In: 2020 IEEE Conference on computational intelligence in bioinformatics and computational biology (CIBCB); Via del Mar; 2020. P. 1–8. doi: 10.1109/CIBCB48159.2020.9277712
  47. Kumar S, Shvetsov AV, Alsamhi SH. FuzzyGuard: a novel multimodal neuro-fuzzy framework for COPD early diagnosis. IEEE Internet Things J. 2024;12(8):9627–9637. doi: 10.1109/JIOT.2024.3467176
  48. Nemati E, Xu X, Nathan V, et al. UbiLung: multi-modal passive-based lung health assessment. In: ICASSP 2022-2022 IEEE International conference on acoustics, speech and signal processing; Singapore; 2022. P. 551–555. doi: 10.1109/ICASSP43922.2022.9746614
  49. Epiu I, Gandevia SC, Boswell-Ruys CL, et al. Respiratory-related evoked potentials in chronic obstructive pulmonary disease and healthy aging. Physiol Rep. 2022;10(23):e15519. doi: 10.14814/phy2.15519 EDN: MQXEWB
  50. Dally EC, Rekha BB. Automated chronic obstructive pulmonary disease (COPD) detection and classification using mayfly optimization with deep belief network model. Biomed Signal Process Control. 2024;96(Part A):106488. doi: 10.1016/j.bspc.2024.106488

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2025

Ссылка на описание лицензии: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).