Современные подходы к иммунотерапии депрессии

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Аффективные расстройства — полиэтиологические заболевания, возникающие в результате комплексного воздействия неблагоприятных генетических, эпигенетических и экологических факторов, взаимодействие которых приводит к формированию структурных (в том числе молекулярных, клеточных) и функциональных изменений в мозге. Результатами современных исследований установлено, что изменения в функционировании иммунной системы являются важным звеном этиологии, патопсихологии и патогенеза аффективных расстройств, в частности, депрессии. Наличие реципрокных взаимоотношений между нервной, эндокринной и иммунной системой, высокая степень коморбидности депрессии с аутоиммунными, инфекционными и хроническими воспалительными заболеваниями подтверждает гипотезу о наличии общих для данных патологических процессов иммуноопосредованных механизмов патогенеза. Широкая распространенность и неуклонный рост заболеваемости, тяжесть клинических проявлений, недостаточная эффективность методов терапевтической коррекции, а также значительный социальный и экономический ущерб ставят проблему эффективного лечения и профилактики депрессии в число одной из наиболее насущных в современной медицине. Фармакологическое лечение депрессии влечет за собой определенные ограничения, такие как отсроченное начало действия антидепрессантов, наличие существенных побочных эффектов, недостаточная эффективность терапии, снижающие приверженность пациента к лечению. Поэтому разработка новых, более эффективных, патогенетически обусловленных стратегий фармакотерапии депрессии — актуальная задача современной психофармакологии. В данном обзоре литературы представлен анализ данных об иммуномодулирующих свойствах ряда антидепрессантов, опыт использования нестероидных противовоспалительных препаратов (селективных ингибиторов циклооксигеназы 2), ингибиторов цитокинов, эпигенетических модуляторов, а также возможные перспективы применения клеточных технологий в иммунотерапии депрессии. Использование иммунотерапии в протоколах лечения больных депрессией открывает новые возможности в коррекции патологических изменений у данной категории пациентов, что позволит повысить эффективность фармакотерапии, улучшить их качество жизни и социальную адаптацию, сохранить трудоспособность, а также снизить нагрузку на систему здравоохранения и общество в целом.

Об авторах

Ирина Александровна Гольдина

Научно-исследовательский институт фундаментальной и клинической иммунологии

Автор, ответственный за переписку.
Email: igoldina@mail.ru
ORCID iD: 0000-0002-8246-9552
SPIN-код: 7537-8927
Россия, Новосибирск

Евгения Валерьевна Маркова

Научно-исследовательский институт фундаментальной и клинической иммунологии

Email: evgeniya_markova@mail.ru
ORCID iD: 0000-0002-9746-3751
SPIN-код: 8439-7310

д-р мед. наук

Россия, Новосибирск

Мария Александровна Княжева

Научно-исследовательский институт фундаментальной и клинической иммунологии

Email: lira357knyazheva@yandex.ru
ORCID iD: 0000-0002-2537-8232
SPIN-код: 8913-3798

канд. биол. наук

Россия, Новосибирск

Иван Владимирович Савкин

Научно-исследовательский институт фундаментальной и клинической иммунологии

Email: i.v.savkin2020@yandex.ru
ORCID iD: 0000-0002-1065-9234
SPIN-код: 8344-4247
Россия, Новосибирск

Тамара Владимировна Шушпанова

Научно-исследовательский институт психического здоровья Томского национального исследовательского медицинского центра Российской академии наук

Email: shush59@mail.ru
ORCID iD: 0000-0002-9455-0358
SPIN-код: 9158-9235

канд. мед. наук

Россия, Томск

Ольга Сергеевна Аникеева

Научно-исследовательский институт фундаментальной и клинической иммунологии

Email: osa7.7@mail.ru
ORCID iD: 0009-0007-0421-7150
SPIN-код: 3490-2527

канд. мед. наук

Россия, Новосибирск

Список литературы

  1. Namkung H, Lee BJ, Sawa A. Causal inference on pathophysiological mediators in psychiatry. Cold Spring Harb Symp Quant Biol. 2018;83:17–23. doi: 10.1101/sqb.2018.83.037655
  2. Iakunchykova O, Leonardsen EH, Wang Y. Genetic evidence for causal effects of immune dysfunction in psychiatric disorders: where are we? Transl Psychiatry. 2024;14(1):63. doi: 10.1038/s41398-024-02778-2
  3. Belmaker RH, Agam G. Major depressive disorder. N Engl J. Med. 2008;358(1):55–68. doi: 10.1056/NEJMra073096
  4. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Association; 2013. 992 p. doi: 10.1176/appi.books.9780890425596
  5. Beurel E, Toups M, Nemeroff CB. The bidirectional relationship of depression and inflammation: Double trouble. Neuron. 2020;107(2):234–256. doi: 10.1016/j.neuron.2020.06.002
  6. Goldina IA, Markova EV. Neuroimmune mechanisms of multiple sclerosis pathogenesis. Krasnoyarsk: Scientific and Innovation Center; 2018. 150 p. (In Russ.)
  7. Chen Y, Dai J, Tang L, et al. Neuroimmune transcriptome changes in patient brains of psychiatric and neurological disorders. Mol Psychiatry. 2023;28(2):710–721. doi: 10.1038/s41380-022-01854-7
  8. Goldina IA, Goldin BG, Markova EV, Kozlov VA. Parameters of cytokine status in multiple sclerosis patients with comorbid depressive disorder. Siberian Bulletin of Psychiatry and Narcology. 2020;(1):5–13. doi: 10.26617/1810-3111-2020-1(106)-5-13 EDN: ZVKJJG
  9. Gold SM, Köhler-Forsberg O, Moss-Morris R, et al. Comorbid depression in medical diseases. Nat Rev Dis Primers. 2020;6(1):69. doi: 10.1038/s41572-020-0200-2
  10. Moustafa AT, Moazzami M, Engel L, et al. Prevalence and metric of depression and anxiety in systemic lupus erythematosus: A systematic review and meta-analysis. Semin Arthritis Rheum. 2020;50(1):84–94. doi: 10.1016/j.semarthrit.2019.06.017
  11. Torres-Berrío A, Issler O, Parise EM, Nestler EJ. Unraveling the epigenetic landscape of depression: focus on early life stress. Dialogues Clin Neurosci. 2019;21(4):341–357. doi: 10.31887/DCNS.2019.21.4/enestler
  12. Giannakopoulou O, Lin K, Meng X, et al. The genetic architecture of depression in individuals of East Asian ancestry: A genome-wide association study. JAMA Psychiatry. 2021;78(11):1258–1269. doi: 10.1001/jamapsychiatry.2021.2099
  13. Jesulola E, Micalos P, Baguley IJ. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model — are we there yet? Behav Brain Res. 2018;341:79–90. doi: 10.1016/j.bbr.2017.12.025
  14. Ménard C, Hodes GE, Russo SJ. Pathogenesis of depression: Insights from human and rodent studies. Neuroscience. 2016;321: 138–162. doi: 10.1016/j.neuroscience.2015.05.053
  15. Papastergiou J, Quilty LC, Li W, et al. Pharmacogenomics guided versus standard antidepressant treatment in a community pharmacy setting: A randomized controlled trial. Clin Transl Sci. 2021;14(4):1359–1368. doi: 10.1111/cts.12986
  16. Bielanin JP, Sun D. Significance of microglial energy metabolism in maintaining brain homeostasis. Transl Stroke Res. 2023;14(4): 435–437. doi: 10.1007/s12975-022-01069-6
  17. Guo S, Wang H, Yin Y. Microglia polarization from M1 to M2 in neurodegenerative diseases. Front Aging Neurosci. 2022;14:815347. doi: 10.3389/fnagi.2022.815347
  18. Rua R, McGavern DB. Advances in meningeal immunity. Trends Mol Med. 2018;24(6):542–559. doi: 10.1016/j.molmed.2018.04.003
  19. Whedon JM, Glassey D. Cerebrospinal fluid stasis and its clinical significance. Altern Ther Health Med. 2009;15(3):54–60.
  20. Prinz M, Priller J. The role of peripheral immune cells in the CNS in steady state and disease. Nat Neurosci. 2017;20(2):136–144. doi: 10.1038/nn.4475
  21. Radjavi A, Smirnov I, Derecki N, Kipnis J. Dynamics of the meningeal CD4(+) T-cell repertoire are defined by the cervical lymph nodes and facilitate cognitive task performance in mice. Mol Psychiatry. 2014;19(5):531–533. doi: 10.1038/mp.2013.79
  22. Jiang H, Wei H, Zhou Y, et al. Overview of the meningeal lymphatic vessels in aging and central nervous system disorders. Cell Biosci. 2022;12(1):202. doi: 10.1186/s13578-022-00942-z
  23. Jeppesen R, Benros ME. Autoimmune diseases and psychotic disorders. Front Psychiatry. 2019;10:131. doi: 10.3389/fpsyt.2019.00131
  24. Harsanyi S, Kupcova I, Danisovic L, Klein M. Selected biomarkers of depression: What are the effects of cytokines and inflammation? Int J Mol Sci. 2022;24(1):578. doi: 10.3390/ijms24010578
  25. Goldina IA, Goldin BG. Differential expression of endogenous human retrovirus HERV-E γ 4-1 in affective disorders. Medical Immunology (Russia). 2017;19(5):215. EDN: ZBFEVN (In Russ.)
  26. Goldina IA, Goldin BG. The human endogenous retrovirus HERV-E λ 4-1 envelope gene expression at affective disorders. Electronic Scientific and Educational Bulletin Health and Education in the XXI Century. 2016;18(11):49–54. EDN: XIDJHT
  27. Lynall M-E, Soskic B, Hayhurst J, et al. Genetic variants associated with psychiatric disorders are enriched at epigenetically active sites in lymphoid cells. Nat Commun. 2022;13(1):6102. doi: 10.1038/s41467-022-33885-7
  28. Lazzarino GP, Engblom D. Depression: Monocytes on my mind. Immunity. 2024;57(4):837–839. doi: 10.1016/j.immuni.2024.03.011
  29. Biltz RG, Swanson SP, Draime N, et al. Antagonism of the brain P2X7 ion channel attenuates repeated social defeat induced microglia reactivity, monocyte recruitment and anxiety-like behavior in male mice. Brain Behav Immun. 2024;115:356–373. doi: 10.1016/j.bbi.2023.10.011
  30. Cathomas F, Lin H-Y, Chan KL, et al. Circulating myeloid-derived MMP8 in stress susceptibility and depression. Nature. 2024;626(8001):1108–1115. doi: 10.1038/s41586-023-07015-2
  31. Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018;18(4):225–242. doi: 10.1038/nri.2017.125
  32. Wang H, He Y, Sun Z, et al. Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. J Neuroinflammation. 2022;19(1):132. doi: 10.1186/s12974-022-02492-0
  33. Goldina IA, Goldin BG. The human endogenous retrovirus HERV – e λ 4–1 envelope gene expression at affective disorders Electronic Scientific and Educational Bulletin Health and Education in the XXI Century. 2016;18(11):49–54. (In Russ.) EDN: XIDJHT
  34. Kim Y-K, Na K-S, Myint A-M, Leonard BE. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:277–284. doi: 10.1016/j.pnpbp.2015.06.008
  35. Köhler CA, Freitas TH, Maes M, et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand. 2017;135(5):373–387. doi: 10.1111/acps.12698
  36. Goldina IA, Goldin BG. Cytokines in ethology and pathogenesis of depression. Electronic Scientific and Educational Bulletin Health and Education in the XXI Century. 2017;19(11):17–25. EDN: ZSUYRP
  37. Goldina IA, Goldin BG, Markova EV. Human endogenous retrovirus HERV-E λ 4-1 in the immunopathogenesis of affective disorder. Russian Journal of Immunology. 2022;25(2):155–160. doi: 10.46235/1028-7221-1130-HER EDN: JNQXAU
  38. Su W-J, Hu T, Jiang C-L. Cool the inflamed brain: A novel anti-inflammatory strategy for the treatment of major depressive disorder. Curr Neuropharmacol. 2024;22(5):810–842. doi: 10.2174/1570159X21666230809112028
  39. Cui L, Li S, Wang S, et al. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther. 2024;9(1):30. doi: 10.1038/s41392-024-01738-y
  40. Miller A, Raison C. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1):22–34. doi: 10.1038/nri.2015.5
  41. Wetsman N. Inflammatory illness: Why the next wave of antidepressants may target the immune system. Nat Med. 2017;23(9): 1009–1011. doi: 10.1038/nm0917-1009
  42. Young JJ, Bruno D, Pomara N. A review of the relationship between proinflammatory cytokines and major depressive disorder. J Affect Disord. 2014;169:15–20. doi: 10.1016/j.jad.2014.07.032
  43. Kohler O, Krogh J, Mors O, Benros ME. Inflammation in depression and the potential for anti-inflammatory treatment. Curr Neuropharmacol. 2016;14(7):732–742. doi: 10.2174/1570159x14666151208113700
  44. Enache D, Pariante CM, Mondelli V. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun. 2019;81:24–40. doi: 10.1016/j.bbi.2019.06.015
  45. Kappelmann N, Lewis G, Dantzer R, et al. Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol Psychiatry. 2018;23(2):335–343. doi: 10.1038/mp.2016.167
  46. Nassar A, Kaplanski J, Azab AN. A Selective nuclear factor-κB Inhibitor, JSH-23, exhibits antidepressant-like effects and reduces brain inflammation in rats. Pharmaceuticals (Basel). 2024;17(10):1271. doi: 10.3390/ph17101271
  47. Köhler CA, Freitas TH, Stubbs B, et al. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: systematic review and meta-analysis. Mol Neurobiol. 2018;55:4195–4206. doi: 10.1007/s12035-017-0632-1
  48. Liu JJ, Wei YB, Strawbridge R, et al. Peripheral cytokine levels and response to antidepressant treatment in depression: a systematic review and meta-analysis. Mol Psychiatry. 2020;25(2):339–350. doi: 10.1038/s41380-019-0474-5
  49. Strawbridge R, Marwood L, King S, et al. Inflammatory proteins and clinical response to psychological therapy in patients with depression: An exploratory study. J Clin Med. 2020;9(12):3918. doi: 10.3390/jcm9123918
  50. Esalatmanesh S, Kashani L, Akhondzadeh S. Celecoxib in treatment of postpartum depression: A case report. Arch Iran Med. 2023;26(5):275–278. doi: 10.34172/aim.2023.42
  51. Wu H, Denna TH, Storkersen JN, Gerriets VA. Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacol Res. 2019;140:100–114. doi: 10.1016/j.phrs.2018.06.015
  52. Correia AS, Vale N. Tryptophan metabolism in depression: a narrative review with a focus on serotonin and kynurenine pathways. Int J Mol Sci. 2022;23(15):8493. doi: 10.3390/ijms23158493
  53. Hunt C, Macedo e Cordeiro T, Suchting R, et al. Effect of immune activation on the kynurenine pathway and depression symptoms — A systematic review and meta-analysis. Neurosci Biobehav Rev. 2020;118:514–523. doi: 10.1016/j.neubiorev.2020.08.010
  54. Leonard B, Maes M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev. 2012;36(2):764–785. doi: 10.1016/j.neubiorev.2011.12.005
  55. Cipriani A, Furukawa TA, Salanti G, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet. 2018;391(10128):1357–1366. doi: 10.1016/S0140-6736(17)32802-7
  56. Park LT, Zarate CA Jr. Depression in the primary care setting. N Engl J Med. 2019;380(6):559–568. doi: 10.1056/NEJMcp1712493
  57. Daliev BB, Klimenko DI, Karpova IV, et al. Antidepressant effect of new coumarin derivatives. Reviews of Clinical Pharmacology and Drug Therapy. 2024;22(2):163–170. doi: 10.17816/RCF623295 EDN: MALWZI
  58. Köhler-Forsberg O, Lydholm C, Hjorthøj C, et al. Efficacy of anti-inflammatory treatment on major depressive disorder or depressive symptoms: meta-analysis of clinical trials. Acta Psychiatr Scand. 2019;139(5):404–419. doi: 10.1111/acps.13016
  59. Patel S, Keating BA, Dale RC. Anti-inflammatory properties of commonly used psychiatric drugs. Front Neurosci. 2023;16:1039379. doi: 10.3389/fnins.2022.1039379
  60. Segi-Nishida E. The effect of serotonin-targeting antidepressants on neurogenesis and neuronal maturation of the hippocampus mediated via 5-HT1A and 5-HT4 receptors. Front Cell Neurosci. 2017;11:142. doi: 10.3389/fncel.2017.00142
  61. Di Rosso ME, Palumbo ML, Genaro AM. Immunomodulatory effects of fluoxetine: A new potential pharmacological action for a classic antidepressant drug? Pharmacol Res. 2016;109:101–107. doi: 10.1016/j.phrs.2015.11.021
  62. Alcocer-Gómez E, Casas-Barquero N, Williams MR, et al. Antidepressants induce autophagy dependent-NLRP3-inflammasome inhibition in Major depressive disorder. Pharmacol. Res. 2017;121: 114–121. doi: 10.1016/j.phrs.2017.04.028
  63. Szałach ŁP, Lisowska KA, Cubała WJ. The influence of antidepressants on the immune system. Arch Immunol Ther Exp (Warsz). 2019;67(3): 143–151. doi: 10.1007/s00005-019-00543-8
  64. Iyengar RL, Gandhi S, Aneja A, et al. NSAIDs are associated with lower depression scores in patients with osteoarthritis. Am J Med. 2013;126(11):1017.e11–1017.e8. doi: 10.1016/j.amjmed.2013.02.037
  65. Majd M, Hashemian F, Hosseini SM, et al. A randomized, double-blind, placebo-controlled trial of celecoxib augmentation of sertraline in treatment of drug-naive depressed women: A pilot study. Iran J Pharm Res. 2015;14(3):891–899.
  66. Wang Z, Wu Q, Wang Q. Effect of celecoxib on improving depression: A systematic review and meta-analysis. World J Clin Cases. 2022;10(22): 7872–7882. doi: 10.12998/wjcc.v10.i22.7872
  67. Simon MS, Arteaga-Henríquez G, Fouad Algendy A, et al. Anti-inflammatory treatment efficacy in major depressive disorder: a systematic review of meta-analyses. Neuropsychiatr Dis Treat. 2023; 19:1–25. doi: 10.2147/NDT.S385117
  68. Rani T, Behl T, Sharma N, et al. Exploring the role of biologics in depression. Cell Signal. 2022;98:110409. doi: 10.1016/j.cellsig.2022.110409
  69. McIntyre RS, Subramaniapillai M, Lee Y, et al. Efficacy of adjunctive infliximab vs placebo in the treatment of adults with bipolar I/II depression: A randomized clinical trial. JAMA Psychiatry. 2019;76(8):783–790. doi: 10.1001/jamapsychiatry.2019.0779
  70. Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2016;12(1):49–62. doi: 10.1038/nrrheum.2015.169
  71. Uzzan S, Azab AN. Anti-TNF-α compounds as a treatment for depression. Molecules. 2021;26(8):2368. doi: 10.3390/molecules26082368
  72. Raison CL, Rutherford RE, Woolwine BJ, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry. 2013;70(1):31–41. doi: 10.1001/2013.jamapsychiatry.4
  73. Scallon B, Cai A, Solowski N, et al. Binding and functional comparisons of two types of tumor necrosis factor antagonists. J Pharmacol Exp Ther. 2002;301(2):418–426. doi: 10.1124/jpet.301.2.418
  74. Rizk MM, Bolton L, Cathomas F, et al. Immune-targeted therapies for depression: current evidence for antidepressant effects of monoclonal antibodies. J Clin Psychiatry. 2024;85(3):23nr15243. doi: 10.4088/JCP.23nr15243
  75. Bavaresco DV, Rodrigues Uggioni ML, Ferraz SD, et al. Efficacy of infliximab in treatment-resistant depression: A systematic review and meta-analysis. Pharmacol Biochem Behav. 2020;188:172838. doi: 10.1016/j.pbb.2019.172838
  76. Yang A, Xin X, Yang W, et al. Etanercept reduces anxiety and depression in psoriasis patients, and sustained depression correlates with reduced therapeutic response to etanercept. Ann Dermatol Venereol. 2019;146(5):363–371. doi: 10.1016/j.annder.2019.03.002
  77. Leman J, Walton S, Layton AM, et al. The real world impact of adalimumab on quality of life and the physical and psychological effects of moderate-to-severe psoriasis: a UK prospective, multicenter, observational study. J Dermatolog Treat. 2020;31(3):213–221. doi: 10.1080/09546634.2019.1592096
  78. Liu N, Yan W, Su R, et al. Research progress on rheumatoid arthritis-associated depression. Front Behav Neurosci. 2023;16:992223. doi: 10.3389/fnbeh.2022.992223
  79. Chang R, Knox J, Chang J, et al. Blood-brain barrier penetrating biologic TNF-α inhibitor for Alzheimer’s disease. Mol Pharm. 2017;14(7):2340–2349. doi: 10.1021/acs.molpharmaceut.7b00200
  80. Gordon KB, Armstrong AW, Han C, et al. Anxiety and depression in patients with moderate-to-severe psoriasis and comparison of change from baseline after treatment with guselkumab vs. adalimumab: results from the Phase 3 VOYAGE2 study. J Eur Acad Dermatol Venereol. 2018;32(11): 1940–1949. doi: 10.1111/jdv.15012
  81. Tiosano S, Yavne Y, Watad A, et al. The impact of tocilizumab on anxiety and depression in patients with rheumatoid arthritis. Eur J Clin Invest. 2020;50(9):e13268. doi: 10.1111/eci.13268
  82. Sun Y, Wang D, Salvadore G, et al. The effects of interleukin-6 neutralizing antibodies on symptoms of depressed mood and anhedonia in patients with rheumatoid arthritis and multicentric Castleman’s disease. Brain Behav Immun. 2017;66:156–164. doi: 10.1016/j.bbi.2017.06.014
  83. Takeuchi T, Yamanaka H, Harigai M, et al. Sirukumab in rheumatoid arthritis refractory to sulfasalazine or methotrexate: a randomized phase 3 safety and efficacy study in Japanese patients. Arthritis Res Ther. 2018;20(1):42. doi: 10.1186/s13075-018-1536-9
  84. Fuchikami M, Yamamoto S, Morinobu S, et al. The potential use of histone deacetylase inhibitors in the treatment of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:320–324. doi: 10.1016/j.pnpbp.2015.03.010
  85. Chen W-Y, Zhang H, Gatta E, et al. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) alleviates depression-like behavior and normalizes epigenetic changes in the hippocampus during ethanol withdrawal. Alcohol. 2019;78:79–87. doi: 10.1016/j.alcohol.2019.02.005
  86. Misztak P, Pańczyszyn-Trzewik P, Sowa-Kućma M. Histone deacetylases (HDACs) as therapeutic target for depressive disorders. Pharmacol Rep. 2018;70(2):398–408. doi: 10.1016/j.pharep.2017.08.001
  87. Martínez-Pacheco H, Picazo O, López-Torres A, et al. Biochemical and behavioral characterization of IN14, a new inhibitor of HDACs with antidepressant-like properties. Biomolecules. 2020;10(2):299. doi: 10.3390/biom10020299
  88. Reddy RG, Surineni G, Bhattacharya D, et al. Crafting carbazole-based vorinostat and tubastatin-a-like histone deacetylase (HDAC) inhibitors with potent in vitro and in vivo neuroactive functions. ACS Omega. 2019;4(17):17279–17294. doi: 10.1021/acsomega.9b01950
  89. Baek SY, Lee J, Kim T, et al. Development of a novel histone deacetylase inhibitor unveils the role of HDAC11 in alleviating depression by inhibition of microglial activation. Biomed Pharmacother. 2023;166:115312. doi: 10.1016/j.biopha.2023
  90. Zimmermann N, Zschocke J, Perisic T, et al. Antidepressants inhibit DNA methyltransferase 1 through reducing G9a levels. Biochem J. 2012;448(1):93–102. doi: 10.1042/BJ20120674
  91. Detich N, Bovenzi V, Szyf M. Valproate induces replication-independent active DNA demethylation. J Biol Chem. 2003;278(30): 27586–27592. doi: 10.1074/jbc.M303740200
  92. Yamawaki Y, Fuchikami M, Morinobu S, et al. Antidepressant-like effect of sodium butyrate (HDAC inhibitor) and its molecular mechanism of action in the rat hippocampus. World J Biol Psychiatry. 2012;13(6):458–467. doi: 10.3109/15622975.2011.585663
  93. Valvassori SS, Varela RB, Arent CO, et al. Sodium butyrate functions as an antidepressant and improves cognition with enhanced neurotrophic expression in models of maternal deprivation and chronic mild stress. Curr Neurovasc Res. 2014;11(4):359–366. doi: 10.2174/1567202611666140829162158
  94. Schmauss C. An HDAC-dependent epigenetic mechanism that enhances the efficacy of the antidepressant drug fluoxetine. Sci Rep. 2015;5:8171. doi: 10.1038/srep08171
  95. Misztak P, Sowa-Kućma M, Pańczyszyn-Trzewik P, et al. Antidepressant-like effects of combined fluoxetine and zinc treatment in mice exposed to chronic restraint stress are related to modulation of histone deacetylase. Molecules. 2021;27(1):22. doi: 10.3390/molecules27010022
  96. Goldina IA, Gaidul KV. Biological activity and therapeutic properties of Curcuma Longa L. Bulletin of the Novosibirsk State University. Series: Biology, Clinical Medicine. 2015;13(1):106–114. EDN: TMZWID
  97. Goldina IA, Markova EV, Gaidul KV. Bioflavonoids in the correction of chronic low-gradient inflammation. Krasnoyarsk: Scientific and Innovation Center; 2021. 198 p. (In Russ.) doi: 10.12731/978-5-907208-62-9 EDN: KECASA
  98. Wang G, An T, Lei C, et al. Antidepressant-like effect of ginsenoside Rb1 on potentiating synaptic plasticity via the miR-134-mediated BDNF signaling pathway in a mouse model of chronic stress-induced depression. J Ginseng Res. 2022;46(3):376–386. doi: 10.1016/j.jgr.2021.03.005
  99. Li Y, Song W, Tong Y, et al. Isoliquiritin ameliorates depression by suppressing NLRP3-mediated pyroptosis via miRNA-27a/SYK/NF-κB axis. J Neuroinflammation. 2021;18(1):1. doi: 10.1186/s12974-020-02040-8
  100. Bhattacharya A, Drevets WC. Role of neuro-immunological factors in the pathophysiology of mood disorders: implications for novel therapeutics for treatment resistant depression. In: Dantzer R, Capuron L, editors. Inflammation-associated depression: evidence, mechanisms and implications. Current topics in behavioral neurosciences. Vol. 31. Springer, Cham; 2017. P. 339–356. doi: 10.1007/7854_2016_43
  101. Chernykh ER, Shevela EYa, Ostanin AA. The role of macrophages in damage recovery of central nervous system: new options for treatment of neurological disorders. Medical Immunology (Russia). 2017;19(1):7–18. doi: 10.15789/1563-0625-2017-1-7-18 EDN: YIELHP
  102. Devanney NA, Stewart AN, Gensel JC. Microglia and macrophage metabolism in CNS injury and disease: The role of immunometabolism in neurodegeneration and neurotrauma. Exp Neurol. 2020;329:113310. doi: 10.1016/j.expneurol.2020.113310
  103. Huang X, Li Y, Fu M, Xin HB. Polarizing macrophages in vitro. In: Rousselet G, editor. Macrophages. Methods in molecular biology. Vol. 1784. New York: Humana Press; 2018. P. 119–126. doi: 10.1007/978-1-4939-7837-3_12
  104. Chernykh ER, Shevela EYa, Sakhno LV, et al. The generation and properties of human M2-like macrophages: potential candidates for CNS repair? Cellular Therapy and Transplantation. 2011;2(6):1–8. doi: 10.3205/ctt-2010-en-000080.01 EDN: YXHKKH
  105. Sakhno LV, Shevela EY, Tikhonova MA, et al. The phenotypic and functional features of human M2 macrophages generated under low serum conditions. Scand J Immunol. 2016;83(2):151–159. doi: 10.1111/sji.12401 EDN: WPSDID
  106. Chernykh E, Shevela E, Kafanova M, et al. Monocyte-derived macrophages for treatment of cerebral palsy: a study of 57 cases. J Neurorestor. 2018;6:41–47. doi: 10.2147/JN.S158843
  107. Shevela EYa, Davydova MN, Starostina NM, et al. Intranasal delivery of M2 macrophage-derived soluble products reduces neurological deficit in patients with cerebrovascular disease: A pilot study. J Neurorest. 2019;7(2):89–100. doi: 10.26599/JNR.2019.9040010 EDN: AGXDUX
  108. Shevela EYa, Davydova MN, Meledina IV, et al. Intranasal immunotherapy with M2 macrophage soluble factors in post-COVID hyposmia: A pilot study. Int Immunopharmacol. 2024;126:111260. doi: 10.1016/j.intimp.2023.111260 EDN: GFYMJJ
  109. Markova E, Shevela E, Ostanin A, et al. New experimental approach to immunotherapy of depression based on M2-macrophages. Eur Psychiatry. 2019;56S:123. doi: 10.1016/j.eurpsy.2019.01.004 EDN: OLNJEJ
  110. Markova EV, Shevela EYa, Knyazeva MA, et al. Effect of M2 macrophage-derived soluble factors on behavioral patterns and cytokine production in various brain structures in depression-like Mice. Bulletin of Experimental Biology and Medicine (Russia). 2022;172(3):341–344. doi: 10.1007/s10517-022-05389-3 EDN: NJPRIE
  111. Markova EV, Knyazheva MA. Prospects of the cellular technologies use in the treatment of depression. Krasnoyarsk: Scientific and Innovation Center; 2024. 170 p. (In Russ.) doi: 10.12731/978-5-907608-39-9 EDN: APTXYM
  112. Rashchupkin IM, Amstislavskaya TG., Markova EV, et al. Effect of soluble factors of macrophages polarized by efferocytosis on neuronal density in the frontal cortex and hippocampus of mice in a model of stress-induced depression. Medical Immunology (Russia). 2023;25(3):521–526. doi: 10.15789/1563-0625-EOS-2731 EDN: UWOWLL
  113. Orlovskaya IA, Toporkova LB, Knyazheva MA, et al. Influence of soluble factors from the M2 phenotype macrophages on hematopoiesis in depression-like state. Medical Immunology (Russia). 2022;24(5): 1057–1064. doi: 10.15789/1563-0625-IOS-2516 EDN: OVTOWD
  114. Patent RU No. 2675111/ 11.12.2018. Byul. No. 35. Markova EV, Knyazheva MA, Savkin IV, et al. Method for stimulating neurogenesis in the hippocampus. Inventions and utility models. (In Russ.)
  115. Markova EV. Immunocompetent cells and regulation of behavioral reactions in norm and pathology. Krasnoyarsk: Scientific and Innovation Center; 2021. 184 p. (In Russ.) doi: 10.12731/978-5-907208-67-4 EDN: QMDWXP
  116. Markova E, Knyazheva M. Prospects for Immunotherapy of depression based on cell technologies. Europ Psychiatry. 2021;64(S1):763–764. doi: 10.1192/j.eurpsy.2021.2022 EDN: CYXBIY
  117. Markova EV, Knyazheva MA. Immune cells as a potential therapeutic agent in the treatment of depression. Medical Immunology (Russia). 2021;23(4):699–704. doi: 10.15789/1563-0625-ICA-2277 EDN: TWTXCI
  118. Markova EV, Knyazheva MA. Tikhonova MA, Amstislavskaya T.G. Structural and functional characteristics of the hippocampus in depressive-like recipients after transplantation of in vitro caffeine-modulated immune cells. Neurosci Lett. 2022;786:136790. doi: 10.1016/j.neulet.2022.136790 EDN: ZZDQXP
  119. Markova EV, Knyazheva MA. Immunomodulatory properties of caffeine and caffeine-treated immune cells in depression-like state. Medical Immunology (Russia). 2023;25(3):533–538. doi: 10.15789/1563-0625-IPO-2666 EDN: HZGHVB
  120. Markova EV, Knyazheva MA. Central effects of ex vivo caffeine-modulated immune cells in the mechanisms of editing depressive-like behavior. Russian Journal of Immunology. 2024;27(2):335–342. doi: 10.46235/1028-7221-16621-CEO EDN: DASBOR
  121. Açıkalın B, Sanlier N. Coffee and its effects on the immune system, trends. Food Sci Technol. 2021;114:625–632. doi: 10.1016/j.tifs.2021.06.023

© Эко-Вектор, 2025

Ссылка на описание лицензии: https://eco-vector.com/for_authors.php#07

 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).