Роль эндотелия в атерогенезе: зависимость развития атеросклероза от свойств эндотелия сосудов

Обложка

Цитировать

Полный текст

Аннотация

В обзоре приведены некоторые доказательства зависимости развития атеросклероза от свойств эндотелия сосудов. Подробно описаны механизмы атерогенеза, процессы эндотелиального транспорта, в том числе и кавеолозависимый путь, а также гемодинамическая гипотеза развития атеросклероза. Обсуждены возможности прямого и рецептор-опосредованного трансцитоза липопротеинов через эндотелиальный барьер. Рассмотрена физиологическая функция процесса аутофагии, обеспечивающего внутриклеточный транспорт липопротеинов.

Об авторах

Нина Соломоновна Парфенова

ФГБНУ "Институт экспериментальной медицины"

Автор, ответственный за переписку.
Email: nina.parf@mail.ru
SPIN-код: 9415-0241
Scopus Author ID: 7003709364
ResearcherId: E-66722014

канд. мед. наук, старший научный сотрудник лаборатории липопротеидов отдела биохимии

Россия, Санкт-Петербург

Список литературы

  1. Аймагамбетова А.О. Атерогенез и воспаление. Обзор литературы // Наука и здравоохранение. – 2016. – № 1. – С. 24–39. [Aimagambetova AO. Аtherogenesis and inflammation. Nauka I zdravookhranenie. 2016;(1):24-39. (In Russ.)]
  2. Anichkov N, Chalatov S. Über experimentelle Cholesterinsteatose: Ihre Bedeutung für die Entstehung einiger pathologischer Prozessen. Zentrbl Allg Pathol Pathol Anat. 1913:24:21-29.
  3. Лиходед В.Г., Бондаренко В.М., Гинцбург А.Л. Экзогенные и эндогенные факторы в патогенезе атеросклероза. Рецепторная теория атерогенеза // Российский кардиологический журнал. – 2010. – Т. 15. – № 2. – С. 92–96. [Likhoded VG, Bondarenko VM, Gintzburg AL. Exogenous and endogenous factors in atherosclerosis pathogenesis. Receptor theory of atherogenesis. Russian journal of cardiology. 2010;15(2):92-96. (In Russ.)]
  4. Adler I. Studies in experimental atherosclerosis: a preliminary report. J Exp Med. 1914;20(2):93-107. https://doi.org/10.1084/jem.20.2.93.
  5. Ross R, Glomset JA. Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science. 1973;180(4093):1332-1339. https://doi.org/10.1126/science.180.4093.1332.
  6. Лазебник Л.Б. К 125-летию со дня рождения Н.Н. Аничкова // Клиническая геронтология. – 2011. – Т. 17. – № 1–2. – С. 81–83. [Lazebnik LB. The 125-jubilee of N.N. Anichkov’s birth. Klinicheskaia gerontologiia. 2011;17(1-2):81-83. (In Russ.)]
  7. Oncley JL. Lipoproteins of human plasma. Harvey Lect. 1954-1955;50:71-91.
  8. Gofman JW, Jones HB, Lindgren FT, et al. Blood lipids and human atherosclerosis. Circulation. 1950;2(2):161-178. https://doi.org/10.1161/01.cir.2.2.161.
  9. Durrington P. Dyslipidaemia. Lancet. 2003;362(9385): 717-731. https://doi.org/10.1016/s0140-6736(03)14234-1.
  10. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232(4746):34-47. https://doi.org/10.1126/science.3513311.
  11. Dominiczak MH, Caslake MJ. Apolipoproteins: metabolic role and clinical biochemistry applications. Ann Clin Biochem. 2011;48(Pt 6):498-515. https://doi.org/10.1258/acb.2011.011111.
  12. Tabas I, Williams KJ, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 2007;116(16):1832-1844. https://doi.org/10.1161/CIRCULATIONAHA.106.676890.
  13. Cohn JS, Marcoux C, Davignon J. Detection, quantification, and characterization of potentially atherogenic triglyceride-rich remnant lipoproteins. Arterioscler Thromb Vasc Biol. 1999;19(10):2474-2486. https://doi.org/10.1161/01.atv.19.10.2474.
  14. Mann CJ, Yen FT, Grant AM, Bihain BE. Mechanism of plasma cholesteryl ester transfer in hypertriglyceridemia. J Clin Invest. 1991;88(6):2059-2066. https://doi.org/10.1172/JCI115535.
  15. Havel RJ. The formation of LDL: mechanisms and regulation. J Lipid Res. 1984;25(13):1570-1576.
  16. Florentin M, Liberopoulos EN, Wierzbicki AS, Mikhailidis DP. Multiple actions of high-density lipoprotein. Curr Opin Cardiol. 2008;23(4):370-378. https://doi.org/10.1097/HCO.0b013e3283043806.
  17. Bruckert E, Hansel B. HDL-c is a powerful lipid predictor of cardiovascular diseases. Int J Clin Pract. 2007;61(11):1905-1913. https://doi.org/10.1111/j.1742-1241.2007.01509.x.
  18. Parton RG, Tillu VA, Collins BM. Caveolae. Curr Biol. 2018;28(8):R402-R405. https://doi.org/10.1016/j.cub.2017. 11.075.
  19. Lamaze C, Tardif N, Dewulf M, et al. The caveolae dress code: structure and signaling. Curr Opin Cell Biol. 2017;47:117-125. https://doi.org/10.1016/j.ceb.2017. 02.014.
  20. Lisanti MP, Tang Z, Scherer PE, et al. Caveolae, transmembrane signalling and cellular transformation. Mol Membr Biol. 1995;12(1):121-124. https://doi.org/10.3109/ 09687689509038506.
  21. Kurzchalia TV, Partan RG. Membrane microdomains and caveolae. Curr Opin Cell Biol. 1999;11(4):424-431. https://doi.org/10.1016/s0955-0674(99)80061-1.
  22. Williams TM, Lisanti MP. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol. 2005;288(3):C494-506. https://doi.org/10.1152/ajpcell.00458.2004.
  23. Pelkmans L, Kartenbeck J, Helenius A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol. 2001;3(5):473-483. https://doi.org/10.1038/35074539.
  24. Shin JS, Gao Z, Abraham SN. Involvement of cellular caveolae in bacterial entry into mast cells. Science. 2000;289(5480):785-788. https://doi.org/10.1126/science. 289.5480.785.
  25. Hayashi K, Matsuda S, Machida K, et al. Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res. 2001;61(6):2361-2364.
  26. Williams TM, Cheung MW, Park DS, et al. Loss of caveolin-1 gene expression accelerates the development of dysplastic mammary lesions in tumor-prone transgenic mice. Mol Biol Cell. 2003;14(3):1027-1042. https://doi.org/10.1091/mbc.e02-08-0503.
  27. Woodman SE, Sotgia F, Galbiati F, et al. Caveolinopathies: mutations in caveolin-3 cause four distinct autosomal dominant muscle diseases. Neurology. 2004;62(4):538-543. https://doi.org/10.1212/wnl.62.4.538.
  28. Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol. 2007;8(3):185-194. https://doi.org/10.1038/nrm2122.
  29. Fra AM, Williamson E, Simons K, Parton RG. De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc Natl Acad Sci U S A. 1995;92(19):8655-8659. https://doi.org/10.1073/pnas.92.19.8655.
  30. Drab M, Verkade P, Elger M, et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science. 2001;293(5539):2449-2452. https://doi.org/10.1126/science.1062688.
  31. Galbiati F, Engelman JA, Volonte D, et al. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem. 2001;276(24):21425-21433. https://doi.org/10.1074/jbc.M100828200.
  32. Zhang X, Sessa WC, Fernandez-Hernando C. Endothelial transcytosis of lipoproteins in atherosclerosis. Front Cardiovasc Med. 2018;5:130. https://doi.org/10.3389/fcvm.2018.00130.
  33. Rahimi N. Defenders and challengers of endothelial barrier function. Front Immunol. 2017;8:1847. https://doi.org/10.3389/fimmu.2017.01847.
  34. J MS, Graindorge A, Soldati-Favre D. New insights into parasite rhomboid proteases. Mol Biochem Parasitol. 2012;182(1-2):27-36. https://doi.org/10.1016/j.molbiopara.2011.11.010.
  35. Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006;86(1):279-367. https://doi.org/10.1152/physrev.00012.2005.
  36. Minshall RD, Malik AB. Transport across the endothelium: regulation of endothelial permeability. Handb Exp Pharmacol. 2006(176 Pt 1):107-144. https://doi.org/10.1007/ 3-540-32967-6_4.
  37. Fung KYY, Fairn GD, Lee WL. Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities. Traffic. 2018;19(1):5-18. https://doi.org/10.1111/tra.12533.
  38. Thuenauer R, Muller SK, Romer W. Pathways of protein and lipid receptor-mediated transcytosis in drug delivery. Expert Opin Drug Deliv. 2017;14(3):341-351. https://doi.org/ 10.1080/17425247.2016.1220364.
  39. Ramirez CM, Zhang X, Bandyopadhyay C, et al. Caveolin-1 regulates atherogenesis by attenuating low-density lipoprotein transcytosis and vascular inflammation independently of endothelial nitric oxide synthase activation. Circulation. 2019;140(3):225-239. https://doi.org/10.1161/CIRCULATIONAHA.118.038571.
  40. Glass CK, Witztum JL. Atherosclerosis. Cell. 2001;104(4):503-516. https://doi.org/10.1016/s0092-8674 (01)00238-0.
  41. Wang Z, Tiruppathi C, Cho J, et al. Delivery of nanoparticle: complexed drugs across the vascular endothelial barrier via caveolae. IUBMB Life. 2011;63(8):659-667. https://doi.org/10.1002/iub.485.
  42. Thoma R. Über die Abhängigkeit der Bindegewebsneubildung in der Arterienintima von den mechanischen Bedingungen des Blutumlaufes. Virchows Arch. 1883;93:443-505. https://doi.org/10.1007/BF02324120.
  43. Wolkoff K. Über die histologische Struktur der Coronararterien des menschlichen Herzens. Virchows Arch. 1923;241:42-58. https://doi.org/10.1007/BF01942462.
  44. Wolkoff K. Über die Altersveränderungen der Arterien bei Tieren. Virchows Arch. 1924;252:208-228. https://doi.org/10.1007/BF01960728.
  45. Stary HC. Composition and classification of human atherosclerotic lesions. Virchows Arch A Pathol Anat Histopathol. 1992;421(4):277-290. https://doi.org/10.1007/bf01660974.
  46. Zarins CK, Giddens DP, Bharadvaj BK, et al. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res. 1983;53(4):502-514. https://doi.org/10.1161/01.res.53.4.502.
  47. Albuquerque ML, Waters CM, Savla U, et al. Shear stress enhances human endothelial cell wound closure in vitro. Am J Physiol Heart Circ Physiol. 2000;279(1):H293-302. https://doi.org/10.1152/ajpheart.2000.279.1.H293.
  48. Dewey CF, Jr., Bussolari SR, Gimbrone MA, Jr., Davies PF. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng. 1981;103(3):177-185. https://doi.org/10.1115/1.3138276.
  49. Diamond SL, Sharefkin JB, Dieffenbach C, et al. Tissue plasminogen activator messenger RNA levels increase in cultured human endothelial cells exposed to laminar shear stress. J Cell Physiol. 1990;143(2):364-371. https://doi.org/10.1002/jcp.1041430222.
  50. Dimmeler S, Haendeler J, Rippmann V, et al. Shear stress inhibits apoptosis of human endothelial cells. FEBS Letters. 1996;399(1-2):71-74. https://doi.org/10.1016/s0014-5793(96)01289-6.
  51. Frangos JA, Eskin SG, McIntire LV, Ives CL. Flow effects on prostacyclin production by cultured human endothelial cells. Science. 1985;227(4693):1477-1479. https://doi.org/10.1126/science.3883488.
  52. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest. 1989;83(5):1774-1777. https://doi.org/10.1172/JCI114081.
  53. Grabowski EF, Jaffe EA, Weksler BB. Prostacyclin production by cultured endothelial cell monolayers exposed to step increases inshear stress. J Lab Clin Med. 1985;105(1):36-43. https://doi.org/10.5555/uri:pii:0022214385900861.
  54. Grabowski EF, Reininger AJ, Petteruti PG, et al. Shear stress decreases endothelial cell tissue factor activity by augmenting secretion of tissue factor pathway inhibitor. Arterioscler Thromb Vasc Biol. 2001;21(1):157-162. https://doi.org/10.1161/01.atv.21.1.157.
  55. Helmlinger G, Geiger RV, Schreck S, Nerem RM. Effects of pulsatile flow on cultured vascular endothelial cell morphology. J Biomech Eng. 1991;113(2):123-131. https://doi.org/10.1115/1.2891226.
  56. Kaiser D, Freyberg MA, Friedl P. Lack of hemodynamic forces triggers apoptosis in vascular endothelial cells. Biochem Biophys Res Commun. 1997;231(3):586-590. https://doi.org/10.1006/bbrc.1997.6146.
  57. Kawai Y, Matsumoto Y, Ikeda Y, Watanabe K. Regulation of antithrombogenicity in endothelium by hemodynamic forces. Rinsho Byori. 1997;45(4):315-320.
  58. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 1991;88(11):4651-4655. https://doi.org/10.1073/pnas.88.11.4651.
  59. Kuchan MJ, Frangos JA. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am J Physiol. 1994;266(3 Pt 1):C628-636. https://doi.org/10.1152/ajpcell.1994.266.3.C628.
  60. Levesque M. Vascular endottielial cell proliferation in culture and the influence of flow. Biomaterials. 1990;11(9):702-707. https://doi.org/10.1016/0142-9612(90)90031-k.
  61. Malek AM, Jackman R, Rosenberg RD, Izumo S. Endothelial expression of thrombomodulin is reversibly regulated by fluid shear stress. Circ Res. 1994;74(5):852-860. https://doi.org/10.1161/01.res.74.5.852.
  62. Y. Ngai C. Vascular responses to shear stress: the involvement of mechanosensors in endothelial cells. Open Circ Vasc J. 2012;3(1):85-94. https://doi.org/10.2174/1877382601003010085.
  63. Noris M, Morigi M, Donadelli R, et al. Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circ Res. 1995;76(4):536-543. https://doi.org/10.1161/01.res.76.4.536.
  64. Okahara K, Sun B, Kambayashi J. Upregulation of prostacyclin synthesis-related gene expression by shear stress in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 1998;18(12):1922-1926. https://doi.org/10.1161/01.atv.18.12.1922.
  65. Papaioannou TG, Stefanadis C. Vascular wall shear stress: basic principles and methods. Hellenic J Cardiol. 2005;46(1):9-15.
  66. Paszkowiak JJ, Dardik A. Arterial wall shear stress: observations from the bench to the bedside. Vasc Endovascular Surg. 2003;37(1):47-57. https://doi.org/10.1177/ 153857440303700107.
  67. Radomski MW, Palmer RM, Moncada S. An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci U S A. 1990;87(13):5193-5197. https://doi.org/10.1073/pnas.87.13.5193.
  68. Rubanyi GM, Romero JC, Vanhoutte PM. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol. 1986;250(6 Pt 2):H1145-1149. https://doi.org/10.1152/ajpheart.1986.250.6.H1145.
  69. Takada Y, Shinkai F, Kondo S, et al. Fluid shear stress increases the expression of thrombomodulin by cultured human endothelial cells. Biochem Biophys Res Commun. 1994;205(2):1345-1352. https://doi.org/10.1006/bbrc.1994.2813.
  70. Topper JN, Cai J, Falb D, Gimbrone MA, Jr. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Natl Acad Sci U S A. 1996;93(19):10417-10422. https://doi.org/10.1073/pnas.93.19.10417.
  71. Traub O, Berk BC. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol. 1998;18(5):677-685. https://doi.org/10.1161/01.atv.18.5.677.
  72. Vyalov S, Langille BL, Gotlieb AI. Decreased blood flow rate disrupts endothelial repair in vivo. Am J Pathol. 1996;149(6):2107-2118.
  73. Cheng C, Tempel D, van Haperen R, et al. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation. 2006;113(23):2744-2753. https://doi.org/10.1161/CIRCULATIONAHA.105.590018.
  74. Guo FX, Hu YW, Zheng L, Wang Q. Shear stress in autophagy and its possible mechanisms in the process of atherosclerosis. DNA Cell Biol. 2017;36(5):335-346. https://doi.org/10.1089/dna.2017.3649.
  75. Kuma A, Mizushima N. Physiological role of autophagy as an intracellular recycling system: with an emphasis on nutrient metabolism. Semin Cell Dev Biol. 2010;21(7):683-690. https://doi.org/10.1016/j.semcdb.2010.03.002.
  76. Mizushima N. Physiological functions of autophagy. Curr Top Microbiol Immunol. 2009;335:71-84. https://doi.org/10.1007/978-3-642-00302-8_3.
  77. Lavandero S, Troncoso R, Rothermel BA, et al. Cardiovascular autophagy: concepts, controversies, and perspectives. Autophagy. 2013;9(10):1455-1466. https://doi.org/10.4161/auto.25969.
  78. Lavandero S, Chiong M, Rothermel BA, Hill JA. Autophagy in cardiovascular biology. J Clin Invest. 2015;125(1):55-64. https://doi.org/10.1172/JCI73943.
  79. Yang Q, Li X, Li R, et al. Low shear stress inhibited endothelial cell autophagy through TET2 downregulation. Ann Biomed Eng. 2016;44(7):2218-2227. https://doi.org/10.1007/s10439-015-1491-4.
  80. Torisu K, Singh KK, Torisu T, et al. Intact endothelial autophagy is required to maintain vascular lipid homeostasis. Aging Cell. 2016;15(1):187-191. https://doi.org/10.1111/acel.12423.
  81. Park SK, La Salle DT, Cerbie J, et al. Elevated arterial shear rate increases indexes of endothelial cell autophagy and nitric oxide synthase activation in humans. Am J Physiol Heart Circ Physiol. 2019;316(1):H106-H112. https://doi.org/10.1152/ajpheart.00561.2018.
  82. Shesely EG, Maeda N, Kim HS, et al. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 1996;93(23):13176-13181. https://doi.org/10.1073/pnas.93.23.13176.
  83. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest. 1989;83(5):1774-1777. https://doi.org/10.1172/JCI114081.
  84. Bernatchez P, Sharma A, Bauer PM, et al. A noninhibitory mutant of the caveolin-1 scaffolding domain enhances eNOS-derived NO synthesis and vasodilation in mice. J Clin Invest. 2011;121(9):3747-3755. https://doi.org/10.1172/JCI44778.
  85. Trane AE, Pavlov D, Sharma A, et al. Deciphering the binding of caveolin-1 to client protein endothelial nitric-oxide synthase (eNOS): scaffolding subdomain identification, interaction modeling, and biological significance. J Biol Chem. 2014;289(19):13273-13283. https://doi.org/10.1074/jbc.M113.528695.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Метаболизм хиломикронов: ЛВП — липопротеины высокой плотности; ХЭ — холестериновые эстеры; АI, II, IV, V, СI, II, III, Е, B-48 — аполипопротеины; ТГ — триглицериды; LDL-рецептор — рецептор липопротеинов низкой плотности; LRP — липопротеиновый рецептор [11]

Скачать (228KB)
3. Рис. 2. Метаболизм липопротеинов очень низкой плотности: ЛВП — липопротеины высокой плотности; ЛНП — липопротеины низкой плотности; ЛОНП — липопротеины очень низкой плотности; ТГ — триглицериды; ХЭ — холестероловые эфиры; АI, II, IV, Е, СI, II, III, B100 — аполипопротеины; LDL-рецептор — рецептор липопротеинов низкой плотности [11]

Скачать (232KB)
4. Рис. 3. Метаболизм липопротеинов низкой плотности: ЛВП — липопротеины высокой плотности; ЛНП — липопротеины низкой плотности; ЛОНП — липопротеины очень низкой плотности; Е, С, B100 — аполипопротеины; LDL-рецептор — рецептор липопротеинов низкой плотности [11]

Скачать (231KB)
5. Рис. 4. Метаболизм липопротеинов высокой плотности: ЛВП — липопротеины высокой плотности; ЛОНП — липопротеины очень низкой плотности; ТГ — триглицериды; АI, AII, Е, С — аполипопротеины; ХЭ — холестериновые эфиры; ABCA1 — АТФ-связывающий кассетный транспортер А1; LCAT — лецитинхолестеринацилтрансфераза [11]

Скачать (216KB)
6. Рис. 5. Транспорт липопротеинов низкой плотности через эндотелий: ЛНП — липопротеины низкой плотности; Р-ЛНП — рецептор липопротеинов низкой плотности; ALK1 — активин-рецептороподобная киназа; SR-B1 — скавенжер «мусорщик» рецептор B1 [32]

Скачать (307KB)
7. Рис. 6. Кавеола: схема (слева) и электронограмма (справа) [28]

Скачать (195KB)
8. Рис. 7. Схематичное изображение модели напряжения сдвига, полученной при помощи манжеты. Справа: прямой сегмент сонной артерии мыши (без манжеты), имеющий ламинарный кровоток (обозначен параллельными стрелками). На основе допплерографии среднее напряжение сосудистого сдвига было рассчитано как 15 Н/м2. Слева: сонная артерия мыши, имеющая форму конуса из-за подсоединенной наружной манжеты. До сужения давление сосудистого сдвига относительно низкое (по сравнению с контрольным сосудом) — 10 Н/м2 и вызвано ограничивающим кровоток стенозом артерии. Внутри стенотической части напряжение сдвига увеличивается от относительно низкого (10 Н/м2) до относительно высокого (25 Н/м2). На выходе регистрируется вихревое напряжение сдвига со средним диапазоном (14 Н/м2) [73]

Скачать (140KB)
9. Рис. 8. Зоны пониженного и вихревого напряжения сосудистого сдвига, способствующие развитию атеросклероза у мышей, получавших атерогенную западную диету [73]. Дугу аорты и каротидную артерию окрашивали при помощи судана красного для выявления атеросклеротических поражений. Белые линии показывают место фиксации манжеты. Проксимальнее от нее находится область пониженного напряжения сосудистого сдвига, дистальнее — вихревая зона. Манжету устанавливали животным после двухнедельного нахождения на атерогенной диете. Затем последовательно выводили мышей из эксперимента на 6-й (a), 9-й (b) и 12-й (c–e) неделе. При исследовании сонных артерий у контрольной группы (d) или мышей с нестенозирующей манжетой (e) не было обнаружено признаков атеросклероза. Каждая экспериментальная группа мышей состояла из 6–8 особей

Скачать (128KB)

© Парфенова Н.С., 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).