在辐射诊断中使用文本机床的可能性和局限性

封面图片

如何引用文章

详细

论证。在放射学中,重要信息不仅包括在医学图像中,还包括在放射科医生创建的随附文本描述中。包含某些数据的研究方案的识别和这些数据的提取首先可能对临床问题有用,但是,鉴于大量此类数据,机器分析算法的开发是必要的。

研究目的是评估使用文本处理工具在放射学协议中搜索病理的可能性和局限性。

材料与方法。为了创建自动协议分析算法的第一个原型,选择了参与使用计算机视觉领域的创新技术进行医学图像分析的实验的研究。这些研究包括在莫斯科医疗机构进行的乳房X光检查、胸部X光摄影、胸部X线间接照相、胸部CT和LDCT。对于每种类型的研究,最初都编制了一个关键词词典,对应于目标病理学的存在与否。在使用开发的工具对协议进行初始自动标记之后,放射科医生对结果进行了选择性评估和验证。医生为训练和验证算法而分析的协议数量为977个乳房X线照相术、3196个射线照相术、1608个荧光照相术、4074个胸部CT和398个胸部LDCT。为了对开发的算法进行最终测试,额外标记了1032项乳房 X线照相术研究、544项荧光照相/射线照相术、5000项胸部CT研究和1082项胸部LDCT研究的测试数据集。

结果。最好结果是根据胸部CT协议(精确度0.996,灵敏度0.998,特异性0.989)和乳房X光检查协议(精确度1.0,灵敏度1.0,特异性1.0)分别在寻找病毒性肺炎迹象和寻找乳腺癌迹象的方面取得的。当通过该算法搜索肺癌征兆时,指标如下:精确度0.895,灵敏度0.829,特异性0.936,以及在射线照相和荧光照相术协议中搜索胸部器官的病理变化时为精确度0.912,灵敏度1.000,特异性0.844。

结论。机器方法可用于乳腺X线检查和胸部CT检查文本的自动分类,以寻找病毒性肺炎。在胸部CT和LDCT模式中寻找肺癌征象,在胸部X线摄影和荧光摄影协议中寻找病理变化,所达到的准确性足以成功应用于医生和人工智能模型工作的自动比较。

作者简介

Daria Yu. Kokina

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: d.kokina@npcmr.ru
ORCID iD: 0000-0002-1141-8395
SPIN 代码: 9883-4656
俄罗斯联邦, Moscow

Victor A. Gombolevskiy

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: g_victor@mail.ru
ORCID iD: 0000-0003-1816-1315
SPIN 代码: 6810-3279

MD, Cand. Sci. (Med.)

俄罗斯联邦, Moscow

Kirill M. Arzamasov

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: k.arzamasov@npcmr.ru
ORCID iD: 0000-0001-7786-0349
SPIN 代码: 3160-8062

MD, Cand. Sci. (Med.)

俄罗斯联邦, Moscow

Anna E. Andreychenko

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of Moscow Health Care

Email: a.andreychenko@npcmr.ru
ORCID iD: 0000-0001-6359-0763
SPIN 代码: 6625-4186

Cand. Sci. (Phys.-Math.)

俄罗斯联邦, Moscow

Sergey P. Morozov

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

编辑信件的主要联系方式.
Email: spmoroz@gmail.com
ORCID iD: 0000-0001-6545-6170
SPIN 代码: 8542-1720

MD, Dr. Sci. (Med.), Professor

俄罗斯联邦, Moscow

参考

  1. Sorin V, Barash Y, Konen E, Klang E. Deep learning for natural language processing in radiology: Fundamentals and a systematic review. J Am Coll Radiol. 2020;17(5):639–648. doi: 10.1016/j.jacr.2019.12.026
  2. Monshi MM, Poon J, Chung V. Deep learning in generating radiology reports: A survey. Artif Intell Med. 2020;(106):101878. doi: 10.1016/j.artmed.2020.101878
  3. Banerjee I, Chen MC, Lungren MP, Rubin DL. Radiology report annotation using intelligent word embeddings: Applied to multi-institutional chest CT cohort. J Biomed Inform. 2018;(77):11–20. doi: 10.1016/j.jbi.2017.11.012
  4. Kivotova E, Maksudov B, Kulee R, Ibragimov B. Extracting clinical information from chest X-ray reports: A case study for Russian language. Conference: International Conference Nonlinearity, Information and Robotics (NIR)At: Innopolis, Russia; 2020. Р. 1–6. doi: 10.1109/NIR50484.2020.9290235
  5. Lee C, Kim Y, Kim YS, Jang J. Automatic disease annotation from radiology reports using artificial intelligence implemented by a recurrent neural network. Am J Roentgenol. 2019;212(4):734–740. doi: 10.2214/AJR.18.19869
  6. Yuan J, Zhu H, Tahmasebi A. Classification of pulmonary nodular findings based on characterization of change using radiology reports. AMIA Jt Summits Transl Sci Proc. 2019;2019:285–294.
  7. Morozov SP, Protsenko DN, Smetanina SV, et al. Radiation diagnostics of coronavirus disease (COVID-19): Organization, methodology, interpretation of results: Preprint, 2020-II. Version 2. Moscow; 2020. 78 р. (In Russ).
  8. The prevention, diagnosis and treatment of the new coronavirus infection 2019-nCoV. Temporary guidelines Ministry of Health of the Russian Federation. Pulmonologiya. 2019;29(6):655–672. (In Russ). doi: 10.18093/0869-0189-2019-29-6-655-672
  9. D’Orsi CJ, Sickles EA, Mendelson EB, et al. ACR BI-RADS Atlas, Breast Imaging Reporting and Data System. Reston, VA, American College of Radiology; 2013.
  10. Caliskan D, Zierk J, Kraska D, et al. First steps to evaluate an NLP tool’s medication extraction accuracy from discharge letters. Stud Health Technol Inform. 2021;(278):224–230. doi: 10.3233/SHTI210073
  11. American College of Radiology Committee on Lung-RADS. Lung-RADS Assessment Categories version 1.1. Available from: https:// www.acr.org/-/media/ACR/Files/RADS/Lung-RADS/LungRADSAssessmentCategoriesv1-1.pdf. Accessed: 01.01.2020.
  12. Morozov SP, Vladzimirskiy AV, Gombolevskiy VA, et al. Artificial intelligence: natural language processing for peer-review in radiology. J Radiol Nuclear Med. 2018;99(5):253–258. (In Russ). doi: 10.20862/0042-4676-2018-99-5-253-258
  13. Hansell DM, Bankier AA, MacMahon H, et al. Fleischner Society: glossary of terms for thoracic imaging. Radiology. 2008;246(3):697–722. doi: 10.1148/radiol.2462070712
  14. MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: From the fleischner society 2017. Radiology. 2017;284(1):228–243. doi: 10.1148/radiol.2017161659
  15. Callister ME, Baldwin DR, Akram AR, et al.; British Thoracic Society Pulmonary Nodule Guideline Development Group; British Thoracic Society Standards of Care Committee. British Thoracic Society guidelines for the investigation and management of pulmonary nodules. Thorax. 2015;70(Suppl 2):ii1–ii54. doi: 10.1136/thoraxjnl-2015-207168
  16. Sinitsyn VE, Komarova MA, Mershina EA. Radiology report: past, present and future. J radiol nuclear med. 2014;(3):35–40. (In Russ).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2022

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».