Structure of the essential spectrum and the discrete spectrum of the energy operator of six-electron systems in the Hubbard model. Fourth triplet state
- Authors: Tashpulatov S.M.1
-
Affiliations:
- Institute of Nuclear Physics of the Academy of Sciences of the Republic of Uzbekistan
- Issue: Vol 236 (2024)
- Pages: 31-48
- Section: Статьи
- URL: https://ogarev-online.ru/2782-4438/article/view/275177
- DOI: https://doi.org/10.36535/2782-4438-2024-236-31-48
- ID: 275177
Cite item
Full Text
Abstract
In this paper, we analyze the energy operator of six-electron systems within the framework of the Hubbard model and examine the structure of the essential spectrum and the discrete spectrum of the system in the fourth triplet state. We prove that in the one- and two-dimensional cases, the essential spectrum of the six-electron fourth triplet state operator is the union of seven segments, whereas the discrete spectrum contains at most one eigenvalue. In the three-dimensional case, the following situations can occur: (a) the essential spectrum of the operator is the union of seven segments and the discrete spectrum contains at most one eigenvalue; (b) the essential spectrum is the union of four segments and the discrete spectrum is empty; (c) the essential spectrum is the union of two segments and the discrete spectrum is empty; (d) the essential spectrum consists of a single segment and the discrete spectrum is empty. We found conditions under which each of these situations occurs.
About the authors
Sadulla M. Tashpulatov
Institute of Nuclear Physics of the Academy of Sciences of the Republic of Uzbekistan
Author for correspondence.
Email: sadullatashpulatov@yandex.ru
Uzbekistan, Tashkent
References
- Вальков В. В., Овчинников С. Г., Петраковский О. Г. Спектр возбуждений двухмагнонных систем в легкоосном квазимерном ферромагнетике// Физика твердого тела. — 1988. — 30. — С. 3044–3047.
- Изюмов Ю. А. Модель Хаббарда в режиме сильных корреляций// Усп. физ. наук. — 1995. — 165,№4.— С. 403–427.
- Изюмов Ю. А., Чащин Н. И., Алексеев Д. С. Теория сильно коррелированных систем. Метод производящего функционала. — М.-Ижевск, 2006.
- Карпенко Б. В., Дякин В. В., Будрина Г. Л. Двухэлектронные системы в модели Хаббарда// Физика металлов и металловедение. — 1986. — 61, № 4. — С. 702–706.
- Овчинников С. Г., Шнейдер E. И. Спектральные функции модели Хаббарда в случае половинного заполнения// Физика твердого тела. — 2004. — 46, № 8. — С. 1428–1432.
- Ташпулатов С. М. О спектральных свойствах трехэлектронных систем в модели Хаббарда// Теор. мат. физ. — 2014. — 179, № 3. — С. 387–405.
- Ташпулатов С. М. Структура существенного спектра и дискретный спектр оператора энергии шестиэлектронных систем в модели Хаббарда. Второе синглетное состояние// Тр. Ин-та мат. мех. УрО РАН. — 2023. — 29, № 3. — С. 210–230.
- Anderson P. W. Localized magnetic states in metals// Phys. Rev. — 1961. — 124. — P. 41–53.
- Arovas D. P., Berg E., Kivelson S., Raghy S. The Hubbard model// Ann. Rev. Condens. Matter Phys. —2022. — 13. — P. 239–274.
- Gutzwiller M. C. Effect of correlation on the ferromagnetism of transition metals// Phys. Rev. Lett. —1963. — 10. — P. 159–162.
- Hubbard J. Electron correlations in narrow energy bands// Proc. Roy. Soc. A. — 1963. — 276. — P. 238–257.
- Ichinose T. Spectral properties of tensor products of linear operators. I// Trans. Am. Math. Soc. — 1978.— 235. — P. 75–113.
- Ichinose T. Spectral properties of tensor products of linear operators. II. The approximate point spectrum and Kato essential spectrum// Trans. Am. Math. Soc. — 1978. — 237. — P. 223–254.
- Ichinose T. Tensor products of linear operators. Spectral theory// in: Banach Center Publications. Vol. 8.— Warsaw: Polish Scientific Publishers, 1982. — P. 294–300.
- Kanamori J. Electron correlation and ferromagnetism of transition metals// Progr. Theor. Phys. — 1963.— 30. — P. 275–289.
- Reed M., Simon B. Methods of Modern Mathematical Physics. Vol 1. Functional Analysis. — New York: Academic Press, 1972.
- Reed M., Simon B. Methods of Modern Mathematical Physics. Vol 4. Operator Analysis. — New York: Academic Press, 1982.
- Tashpulatov S. M. Spectra of the energy operator of four-electron systems in the triplete state in the Hubbard model// J. Phys. Conf. Ser. — 2016. — 697. — 012025.
- Tashpulatov S. M. The structure of essential spectra and discrete spectrum of four-electron systems in the Hubbard model in a singlet state// Lobachevskii J. Math. — 2017. — 38, № 3. — P. 530–541.
- Tashpulatov S. M. Structure of essential spectrum and discrete spectra of the energy operator of five-electron systems in the Hubbard model-doublet state// in: Operator Theory and Differential Equations (Kusraev A. G., Totieva Z. D., eds.). — cham: Birkhäuser, 2021. — P. 275—301.
- Tashpulatov S. M. The structure of essential spectra and discrete spectrum of the energy operator of five-electron systems in the Hubbard model. Fifth doublet state// Bull. Inst. Math. — 2018. — 5. — P. 43–52.
- Tashpulatov S. M. Structure of the essential and discrete spectra of the energy operator of five-electron systems in the Hubbard model. Third and Fourth doublet states// J. Appl. Math. Phys. — 2020. — 8,№ 12. — P. 2886–2918.
- Tashpulatov S. M. Structure of the essential and discrete spectra of the energy operator of five-electron systems in the Hubbard model. Sextet and quartet states// Am. Rev. Math. Stat. — 2021. — 9. — P. 12–40.
- Tashpulatov S. M. Structure of the essential and discrete spectra of the energy operator of five-electron systems in the Hubbard model. Fourth quartet state// Far Eastern Math. J. — 2023. — 23, № 1. — P. 112–133.
Supplementary files
