
 

Bukharov D.N., Tumarkina D.D., Kucherik A.O., Tkachev A.G., Arakelyan S.M., Burakova I.V., Burakov A.E. 

Journal of Advanced Materials and Technologies. 2024. Vol. 9, No. 3  

232

77. Savin AV, Sakovich RA, Mazo MA. Using spiral 
chain models for study of nanoscroll structures. Physical 
Review B. 2018;97(16):165436. DOI:10.1103.PhysRevB. 
97.165436 

78. Kulagin AE, Shapovalov AV. Analytical 
description of the diffusion in a cellular automaton with the 
Margolus neighbourhood in terms of the two-dimensional 
Markov chain. Mathematics. 2023;11(3):584. DOI:10.3390. 
math11030584 

79. Bukharov DN, Skryabin IO, Arakelyan SM. 
Model of the microscroll structure. Journal of Physics: 
Conference Series. 2019;1331(1):012019. DOI:10.1088. 
1742-6596.1331.1.012019 

80. Burlakov RB, Kovivchak VS. On the issue of 
measuring the resistivity of conductive layers using the 
four-probe method. Vestnik Omskogo Universiteta. 
2014;2(72):59-68.(In Russ.) 

81. Apostolova T, Kurylo V, Gnilitskyi I. Ultrafast 
laser processing of diamond materials: A Review. 
Frontiers in Physics. 2021;9:650280. DOI:10.3389/ 
fphy.2021.650280 

82. Tikhomirov S, Kimstach T. Raman spectroscopy 
– a promising method for studying carbon nanomaterials. 
Analitika. 2011;(6):28-32. (In Russ.) 

83. Shimizu M, Shimotsuma Y, Sakakura M, Yuasa T, 
et al. Periodic metallo-dielectric structure in diamond. 
Optics Express. 2009;17(1):46-54. DOI:10.1364/OE.17. 
000046 

84. Kononenko TV, Komlenok MS, Pashinin VP, 
Pimenov SM, et al. Femtosecond laser microstructuring in 
the bulk of diamond. Diamond and Related Materials. 
2009;18(2-3):196-199. DOI:10.1016/j.diamond.2008.07.014 

85. Kononenko TV, Konov VI, Pimenov SM, 
Rossukanyi NM, et al. Three-dimensional laser writing in 
diamond bulk. Diamond and Related Materials. 
2011;20(2):264-268. DOI:10.1016/j.diamond.2010.12.013 

86. Sun B, Salter PS, Booth MJ. High conductivity 
micro-wires in diamond following arbitrary paths. Applied 
Physics Letters. 2014;105(23):231105. DOI:10.1063/ 
1.4902998 

87. Shimotsuma Y. Three-dimensional nanostructuring 
of transparent materials by the femtosecond laser 
irradiation. Journal of Laser Micro/Nanoengineering. 
2006;1(3):181-184. DOI:10.2961/jlmn.2006.03.0006 

88. Lagomarsino S, Bellini M, Corsi C, Fanetti S,  
et al. Electrical and Raman-imaging characterization of 
laser-made electrodes for 3D diamond detectors. Diamond 
and Related Materials. 2014;43:23-28. DOI:10.1016/ 
j.diamond.2014.01.002 

89. Kulnitsky BA, Perezhogin IA, Blank VD. 
Polytypes and twins in the diamond – lonsdaleite system. 
Izvestiya vysshikh uchebnykh zavedeniy. Seriya Khimiya  
i khimicheskaya tekhnologiya = ChemChemTech. 
2015;5(58):48-50. (In Russ.) 

90. Ying P, Gao Y, Zhang B, Wu Y, et al. Synthesis 
of twin-structured nanodiamond particles. AIP Advances. 
2020;10(1):015240. DOI:10.1063/1.5141035 

Appendix 
 

Different DLA calculation schemes  
with Moore and/or von Neumann Neighborhoods 

 
P.1. Algorithm for fiber model construction 

 
The algorithm for constructing the fiber model in the 

DLA approach was developed from the following steps 
(Fig. P.1): (1) At the initialization stage, a starting structure 
consisting of a system of seed particles located on the 
lower boundary was generated within the calculation area 
with a uniform grid, and the fiber size (maximum number 
of particles in the calculation area) was set; (2) A specified 
number of particles were generated at the upper boundary 
of the calculation area; (3) These particles performed 
random shifts downward and sideways with equal or 
different probabilities; (4) If they approached an occupied 
cell within the Moore neighborhood (Fig. P.1b), they 
aggregated with the occupied cell; otherwise, they 
continued moving; (5) Steps 2-4 were repeated. 

The criterion for stopping the iterative process was 
the fiber reaching the required size, when the number of 
particles in the calculation area reached the set value, or 
when the nanowire reached the upper boundary of the 
calculation area.   

 

 
 

Fig. P.1a. DLA fiber model calculation scheme: 
1 – starting structure, 2 – aggregated particles, 3 – new particle,  

4 – random shifts. Explanations are provided in the text 
 

 
 

Fig. P.1b. Moore neighborhood of 8 objects 
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P.2. Two models of growth over inhomogeneity – 
random growth during particle deposition  

in percolation 
 

To describe the algorithm, two functions are used: the 
average surface height ( )th , which defines the baseline 
position for the surface of the sample being studied, and its 
roughness, W(t).   

In the first random growth model, all growth columns 
are filled randomly (Fig. P.2a). Then, after the random 
deposition of N particles, the height of the deposited 
structure h can be calculated using the equation:   

 

( ) ( )21 NffNfh +−= , 
 

where Lf /1=  is the probability of filling a given 
column, and L is the width of the calculation area, i.e.,  

11 += −ii hh , where i is the time step [68].   
In the other model of ballistic percolation deposition, 

a particle is fixed at the point of first contact with the 
already deposited structure, following the nearest neighbor 
rule (Fig. P.2b). In this case, the height is determined by 
the heights of the nearest left and right columns, and the 
height is calculated as the maximum of the neighboring 
columns’ heights:   
 

( ){ 11 ,1,max +− += jjjj hhhh ,  
 

where j is the number of the column being considered [69]. 
Unlike the previous model (Fig. P.2a), in this case, the 
particle can attach to the side surface of the already formed 
structure (Fig. P.2a) [70]. This means that the possibility of 
growth along the local normal to the surface is considered, 
which can lead to the expansion of local protrusions on the 
growth front surface, thus enhancing surface growth in the 
lateral direction. 

The percolation structure is represented as a square 
grid of size m × m a. u. The cells of this grid contain either 
0 (empty site) or 1 (occupied site). Each cell in the model 
is occupied by a particle with probability s, independent of 
the state of neighboring cells. For each grid cell, a random 
number α is generated. If α ≤ s, the value in the cell is set 
to 1; otherwise, it is 0 (cf. with [71]). Here, the parameter s 
represents the percolation threshold, above which a particle 
is not fixed in the cell. 
 

 
 

Fig. P.2. Diagram of both (a) Random and (b) Ballistic  
the deposition processes for Deposited Particles – also,  

the moving particles labeled as letters both a and b 

P.3. DLA model in the iterative algorithm 
 
The initial state of the system was described by 

placing model particles, such as Au particles, along the 
lower boundary, serving as aggregation centers. Each 
iteration began by introducing a new model particle into 
the calculation area. The particle was introduced at a 
random location along the upper boundary, within its 
central third. This simulates the experiment where a laser 
beam with a diameter of 1/3 of the calculation area length 
is applied. Then, the standard DLA procedure was 
followed (Fig. P.3).   

The random walk of the particle occurred from the 
upper boundary of the calculation area, where a notional 
cathode was located, to the lower boundary, where  
a notional anode was located. If an occupied area appeared 
in the Moore neighborhood of the wandering particle, it 
would aggregate with that area with a given probability.   

To describe the random walk, a uniform grid was 
applied to the calculation area. Thus, the random walk was 
formed by a series of single-cell movements across the 
calculation area with a specified probability. Periodic 
boundary conditions were used along the sides, causing the 
particle to reflect off them. At the lower boundary, an 
adhesion condition was applied, fixing the particle in 
place. Varying the probabilities of individual random 
movements allowed for consideration of growth direction. 
Aggregation of the wandering particle occurred with a 
given probability when it encountered an occupied cell in 
the Moore neighborhood. In terms of physics, the 
aggregation probability can be understood as a conditional 
surface tension coefficient in the system, inversely 
proportional to temperature, normalized to the phase 
transition temperature [73].   

To model experimental samples, a random nanowire 
model was proposed [74], where a system of random lines 
of equal thickness was generated on a two-dimensional 
calculation area. Each line was assigned a random length L 
from the interval [Lmin; Lmax]; the area had a width w.  
A line was defined by two points (x1, y1) and (x2, y2) with 
random coordinates as follows: 

 

 
 

Fig. P.3. Model Diagram (One Iteration of the DLA Process): 
1 – Au particles, 2 – C chain, 3 – its random walk,  

4 – previously formed structure.  
The signs (+) and (–) correspond to the direction  

of the applied external electric field 
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;rwxc =   ;rLyc =  ;2 rπ=θ   
 

( ) ;2/cos2 θ+= Lxx c     ( ) ;2/sin2 θ+= Lyy c   
 

( ) ;2/cos1 θ−= Lxx c     ( ) ,2/sin1 θ−= Lyy c  
 

where r is a random number with a uniform distribution, 
and θ is the angle of rotation of the wire segment. 
 

P.4. Model for an individual microsponge 
 

Figure P.4 presents calculations based on the 
proposed model: laser radiation was assumed to act on the 
lower boundary, where the anode (charge (+)) was located. 
Objects of different sizes were generated, moving with  
a given speed toward the upper boundary, where the 
cathode (charge (–)) was located. 

The calculation area was conventionally divided into 
three subregions: two with a side length of 33 a. u., and the 
uppermost one with a length of 34 relative units. In these 
areas, the object movement speeds decreased to 3 a. u.,  
2 a. u., and 1 relative a. u., respectively. The probability of 
object merging was 20 %. The sizes of the model objects 

varied from 1 to 5 a. u. For example, Fig. P.4a shows the 
case of forming a sponge from small elements; Fig. P.4b 
illustrates the formation of individual elongated threads;  
in Fig. P.4c, several small sponges are generated; and  
in Fig. P.4d, most objects have merged into one large 
elongated sponge. 

 
P.5. Helicoidal structure model 

 

The diffusion model of a helicoidal structure was 
based on solving the diffusion equation in a discrete area 
using cellular automaton techniques [78]. The structure 
was synthesized iteratively, starting from an initial shape, 
where a cell in the calculation area would become 
occupied with a given probability if it had a neighboring 
occupied cell within the Moore neighborhood  
(considering 8 adjacent cells, as shown in Fig. P.5).  
The main parameter of the model was the probability of a 
cell being occupied. This relative model parameter can be 
related to a physical parameter of the system, such as the 
intensity of an external magnetic field in the corresponding 
experimental geometry. 

 

 
 

                           (a)                                     (b)                                              (c)                                            (d) 
 

Fig. P.4. Model of a sponge system made from individual threads (in the horizontal plane relative to the boundary): 
a system of small sponges made of short threads, located near the upper boundary of the calculation area (a); a system  

of vertically elongated sponges, made of individual long threads, localized near the upper boundary of the calculation area 
(b); a system of small sponges with a relatively uniform structure, localized near the lower boundary of the calculation area 
(c); a system of sponges made from one large elongated object, located near the lower boundary of the calculation area (d) 
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Fig. P.5. Model diagram: the resulting helical structure after performing 1–10 iterations, starting from the initial shape 

numbered 1 (explanations are provided in the text). 


