ЕВКЛИДОВО РАССТОЯНИЕ ДО ЗАМКНУТОГО МНОЖЕСТВА КАК МИНИМАКСНОЕ РЕШЕНИЕ ЗАДАЧИ ДИРИХЛЕ ДЛЯ УРАВНЕНИЯ ГАМИЛЬТОНА-ЯКОБИ


Цитировать

Полный текст

Аннотация

Предложен комбинированный (сочленяющий аналитические методы и вычислительные процедуры) подход к построению решений в одном классе краевых задач для уравнения гамильтонова типа. В рассматриваемом классе задач минимаксное (обобщенное) решение совпадает с евклидовым расстоянием до краевого множества. Изучены свойства этой функции в зависимости от геометрии краевого множества и дифференциальных свойств его границы. Разработаны методы выявления псевдовершин краевого множества и построения с их помощью сингулярных множеств решения. Методы опираются на свойства локальных диффеоморфизмов и используют частичные односторонние пределы. Эффективность развиваемых подходов исследования проиллюстрирована на примере решения плоской задачи управления по быстродействию для случая невыпуклого целевого множества с границей переменной гладкости.

Полный текст

Задача вычисления евклидова расстояния до замкнутого множества конечномерного пространства актуальна для различных разделов математики и приложений, что позволяет отнести ее к числу проблем, заслуживающих внимания. В данном случае эта проблема исследуется в контексте решения плоской краевой задачи Дирихле для уравнения Гамильтона-Якоби:
×

Об авторах

Александр Александрович Успенский

ФГБУН «Институт математики и механики им. Н.Н. Красовского Уральского отделения Российской академии наук»

Email: uspen@imm.uran.ru
доктор физико-математических наук, зав. сектором 620990, Российская Федерация, г. Екатеринбург, ул. С. Ковалевской, 16

Павел Дмитриевич Лебедев

ФГБУН «Институт математики и механики им. Н.Н. Красовского Уральского отделения Российской академии наук»

Email: pleb@yandex.ru
кандидат физико-математических наук, старший научный сотрудник 620990, Российская Федерация, г. Екатеринбург, ул. С. Ковалевской, 16

Список литературы

  1. Субботин А.И. Обобщенные решения уравнений в частных производных первого порядка. Перспективы динамической оптимизации. Москва; Ижевск: Институт компьютерных технологий, 2003. 336 с.
  2. Красовский Н.Н., Субботин А.И. Позиционные дифференциальные игры. М.: Наука, 1974. 456 с.
  3. Лебедев П.Д., Успенский А.А., Ушаков В.Н. Построение минимаксного решения уравнения типа эйконала // Труды Института математики и механики Уральского отделения РАН. 2008. Т. 14. № 2. С. 182-191.
  4. Демьянов В.Ф., Васильев Л.В. Недифференцируемая оптимизация. М.: Наука, 1981. 384 с.
  5. Брус Дж., Джиблин П. Кривые и особенности. М.: Мир, 1988. 262 с.
  6. Успенский А.А., Лебедев П.Д. Условия трансверсальности ветвей решения нелинейного уравнения в задаче быстродействия с круговой индикатрисой // Труды Института математики и механики Уральского отделения РАН. 2008. Т. 14. № 4. С. 82-100.
  7. Успенский А.А., Лебедев П.Д. О множестве предельных значений локальных диффеоморфизмов при эволюции волновых фронтов // Труды Института математики и механики Уральского отделения РАН. 2010. Т. 16. № 1. С. 171-185.
  8. Успенский А.А., Лебедев П.Д. Построение сингулярных кривых для обобщенных решений уравнений типа эйконала в условиях разрыва кривизны границы краевого множества // Труды Института математики и механики Уральского отделения РАН. 2016. Т. 22. № 1. C. 282-293.
  9. Успенский А.А. Необходимые условия существования псевдовершин краевого множества в задаче Дирихле для уравнения эйконала // Труды Института математики и механики Уральского отделения РАН. 2015. Т. 21. № 1. С. 250-263.
  10. Успенский А.А., Лебедев П.Д. Выявление сингулярности обобщенного решения задачи Дирихле для уравнений типа эйконала в условиях минимальной гладкости границы краевого множества // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. Ижевск, 2018. Т. 28. Вып. 1. С. 59-73.
  11. Успенский А.А. Формулы исчисления негладких особенностей функции оптимального результата в задаче быстродействия // Труды Института математики и механики Уральского отделения РАН. 2014. Т. 20. № 3. С. 276-290.
  12. Ушаков В.Н., Успенский А.А., Малев А.Г. Оценка дефекта стабильности множества позиционного поглощения, подвергнутого дискриминантным преобразованиям // Труды Института математики и механики Уральского отделения РАН. 2011. Т. 17. № 2. С. 209-224.
  13. Успенский А.А., Лебедев П.Д. Процедуры вычисления меры невыпуклости плоского множества // Журнал вычислительной математики и математической физики. 2009. Т. 49. № 3. С. 431-440.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».