Proof of Brouwer's conjecture (BC) for all graphs with number of vertices $n>n_0$ assuming that BC holds for $n\leq n_0$ for some $n_0 \leq 10^{24}$

Cover Page

Cite item

Full Text

Abstract

Abstract. In the article, the authors consider the problem of constructing an upper bound for the sum of the maximal eigenvalues of Laplacian of a graph. The article is devoted to proving the Brouwer conjecture, which states that the sum of the -maximal eigenvalues of Laplacian of a graph does not exceed the number of edges of the graph plus \( (t + 1)t⁄2 \). Note that we prove the validity of the general Brouwer conjecture under the assumption that the conjecture is valid for a finite number of graphs with the number of vertices less than \( 10^{24 } \), i.e., a complete proof of the conjecture is reduced to establishing its validity for a finite number of graphs. The proof of this conjecture attracts the interest of a large number of specialists. There are a number of results for special graphs and a proof of the conjecture for almost all random graphs. The proof we are considering uses an inductive method that has some peculiarities. The original method involves constructing various estimates for the eigenvalues of Laplacian of a graph which is used to construct the induction step. Several variants of the method are considered depending on the values of the coordinates of the eigenvectors of the Laplacian. The well-known fact of equivalence of the validity of the Brouwer conjecture for the graph itself and the complement of the graph is used.

About the authors

Vladimir M. Blinovsky

Institute for Information Transmission Problems; Federal University of Sao Paulo Sao Jose dos Campus, Institute of Science and Technology

Author for correspondence.
Email: vblinovs@yandex.ru
ORCID iD: 0000-0003-4029-5715

Doctor of Physical and Mathematical Sciences, Chief Researcher

Russian Federation, 19 Bolshoy Karetny per., Moscow 127051, Russian Federation; 1201 — Eugenio de Mello, Cesare Mansueto Giulio Lattes Avenue, Sao Jose dos Campus/SP 12247-014, Brazil

Llohann D. Speranca

Federal University of Sao Paulo Sao Jose dos Campus, Institute of Science and Technology

Email: lsperanca@gmail.com
ORCID iD: 0000-0001-8509-8622

PhD, Professor

Brazil, 1201 — Eugenio de Mello, Cesare Mansueto Giulio Lattes Avenue, Sao Jose dos Campus/SP 12247-014, Brazil

Alexander N. Pchelintsev

Tambov State Technical University

Email: pchelintsev.an@yandex.ru
ORCID iD: 0000-0003-4136-1227

Candidate of Physics and Mathematics, Head of the Higher Mathematics Department

Russian Federation, 106 Sovetskaja Str., Tambov 392000, Russian Federation

References

  1. A.E. Brouwer, W.H. Haemers, Spectra of Graphs, Springer-Verlag, New York, 2012.
  2. W.H. Haemers, A. Mohammadian, B. Tayfeh-Rezaie, "On the sum of Laplacian eigenvalues of graphs", Linear Algebra and its Applications, 432 (2010), 2214-2221.
  3. Z. Du, B. Zhou, "Upper bounds for the sum of Laplacian eigenvalues of graphs", Linear Algebra and its Applications, 436:9 (2012), 3672-3683.
  4. Mayank, On variants of the Grone-Merris conjecture, Master's Thesis, Eindhoven, 2010, 59 pp.
  5. I. Rocha, "Brouwer's conjecture holds asymptotically almost surely", 2019, arXiv: 1906.05368v1.
  6. V. Chvátal, P. L. Hammer, "Aggregation of inequalities in integer programming", Ann. of Disc. Math., 1 (1977), 145-162.
  7. R. Grone, R. Merris, "The Laplacian spectrum of a graph. II", SIAM J. Disc. Math., 7 (1994), 221-229.
  8. H. Bai, "The Grone-Merris conjecture", Trans. Amer. Math. Soc., 363:8 (2011), 4463-4474.
  9. A.M. Duval, V. Reiner, "Shifted simplicial complexes are Laplacian integral", Trans. Amer. Math. Soc., 354 (2002), 4313-4344.
  10. C. Helmberg, V. Trevisan, "Spectral threshold dominance, Brouwer's conjecture and maximality of Laplacian energy", Linear Algebra and its Applications, 512 (2017), 18-31.
  11. C. Godsil, G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, 2001.
  12. R. Horn, C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 2013.
  13. V. Blinovsky, L.D. Speranca, "Proof of Brouwers Conjecture (BC) for all graphs with number of vertices n>n_0 assuming that BC holds for n

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».