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ТРИЛИНЕЙНАЯ ОКРЕСТНОСТНАЯ МОДЕЛЬ
ПРОЦЕССА ФОРМИРОВАНИЯ ТЕМПЕРАТУРЫ СМОТКИ

ГОРЯЧЕКАТАНОЙ ПОЛОСЫ

c⃝ А. М. Шмырин, А. Г. Ярцев, В.В. Правильникова

Рассматривается трилинейная окрестностная модель процесса формирования темпера-
туры смотки горячекатаной полосы, где в качестве параметров выступают состояние,
управление и информация. Целью работы является нахождение значений компонентов
модели, обеспечивающих устойчивую работу системы. Представлена методика опре-
деления состава экстремумов. Получено условие существования экстремумов, которое
было проверено на конкретном примере. Высказано предположение об области, в ко-
торой невозможно с определенностью говорить об устойчивости системы. Высказана
гипотеза об условии потери положения стабильного равновесия и перехода системы в
новое состояние.
Ключевые слова: окрестностная система, горячекатаная полоса, отводящий рольганг,
температура смотки, общее параметрическое уравнение.

1. Введение
Окрестностные модели [1, 2] являются перспективным направлением в моделировании

сложных систем, т. к. отличаются гибкостью описания с помощью окрестностей структуры
связей между узлами системы. Теория окрестностных систем является универсальным сред-
ством моделирования класса дискретных распределенных систем: стационарных и динами-
ческих, четких и нечетких, с линейными и нелинейными связями. Данная теория является
обобщающей для многих дискретных распределенных систем, использование окрестностного
подхода в прикладных задачах охватывает системы разной природы и направленности – от
технических до экономических. Окрестностные модели – исключительно эффективный метод
моделирования, позволяющий воспроизводить сложные зависимости.

В текущей работе рассмотрена возможность нахождения значений компонентов модели,
которые обеспечивают устойчивую работу системы ускоренного охлаждения отводящего роль-
ганга стана горячей прокатки.

Микроструктура горячекатаной стали зависит от температуры конца прокатки и темпера-
туры смотки. Для получения мелкозернистой равномерной структуры металла низкоуглеро-
дистой стали ее прокатку необходимо заканчивать при температуре 760−900◦ С, а сматывать
рулон при температуре смотки 540−720◦ С [3, 4]. Охлаждение полосы после чистовой группы
клетей осуществляется на отводящем рольганге. Отводящий рольганг стана горячей прокатки
представляет собой значительный участок пути, через который проходит полоса после про-
катки до моталок. Основная функция участка отводящего рольганга – охлаждение полосы
от температуры прокатки до температуры, приемлемой для смотки. Сверху и снизу полосы,
движущейся на рольганге, установлены бачки с водой для охлаждения. Бачки объединены в
полусекции – минимальные управляемые устройства для охлаждения. Система состоит из 40
секций (80 полусекций) охлаждения полосы. Вода душирует поверхность полосы через ряд
трубок, установленных по ширине бачка. Для управления последовательным включением и
выключением бачков на стане установлена автоматизированная система управления душиру-
ющей установкой.
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2. Идентификация
Рассмотрим реализацию методики построения трилинейной окрестностной модели на при-

мере сложного распределенного объекта — технологического процесса ускоренного охлажде-
ния горячекатаной полосы на широкополосном стане горячей прокатки.

В общей форме трилинейная окрестностная модель имеет вид:∑
α∈Ox[a]

wx[a, α]X[α] +
∑

β∈Ov [a]

wv[a, β]V [β] +
∑

γ∈Oy [a]

wy[a, γ]Y [γ]+

+
∑

α∈Ox[a]
β∈Ov [a]

wxv[a, α, β]X[α]V [β] +
∑

α∈Ox[a]
γ∈Oy [a]

wxy[a, α, γ]X[α]Y [γ]+

+
∑

β∈Ov [a]
γ∈Oy [a]

wvy[a, β, γ]V [β]Y [γ] +
∑

α∈Ox[a]
β∈Ov [a]
γ∈Oy [a]

wxvy[a, α, β, γ]X[α]V [β]Y [γ]

(1)

где X[a]∈Rn , V [a]∈Rm , Y [a]∈Rl – состояние, управление и информация в узле системы;
wx[a, α]∈Rc×n , wv[a, β]∈Rc×m , wy[a, γ]∈Rc×l , wxy[a, α, γ]∈Rc×n×l , wxv[a, α, β]∈Rc×n×m ,
wvy[a, β, γ] ∈Rc×m×l , wxvy[a, α, β, γ] ∈Rc×n×m×l – матрицы-параметры; Ox[a] , Ov[a] , Oy[a]
– окрестности узла a по состоянию, управлению и информации соответственно; a, α, β, γ ∈
∈ A,A= {a1, a2, ..., an} – конечное множество узлов системы.

Модель (1) с подробной записью принимает вид:

wx[1, 1]x[1]+wx[1, 2]x[2] +wv[1, 1]v[1]+wv[1, 2]v[2]+

+wy[1, 1]y[1]+wxv[1, 1, 1]x[1]v[1]+wxv[1, 1, 2]x[1]v[2]+

+wxv[1, 2, 1]x[2]v[1]+wxv[1, 2, 2]x[2]v[2]+wxy[1, 1, 1]x[1]y[1]+

+wxy[1, 2, 1]x[2]y[1]+wvy[1, 1, 1]v[1]y[1]+wvy[1, 2, 1]v[2]y[1]+

+wxvy[1, 1, 1, 1]x[1]v[1]y[1] +wxvy[1, 1, 2, 1]x[1]v[2]y[1]+

+wxvy[1, 2, 1, 1]x[2]v[1]y[1] +wxvy[1, 2, 2, 1]x[2]v[2]y[1]= 0;

wx[2, 1]x[1]+wx[2, 2]x[2] +wx[2, 3]x[3]+wv[2, 1]v[1]+

+wv[2, 2]v[2]+wv[2, 3]v[3] +wy[2, 2]y[2]+wxv[2, 1, 1]x[1]v[1]+

+wxv[2, 1, 2]x[1]v[2]+wxv[2, 1, 3]x[1]v[3]+wxv[2, 2, 1]x[2]v[1]+

+wxv[2, 2, 2]x[2]v[2]+wxv[2, 2, 3]x[2]v[3]+wxv[2, 3, 1]x[3]v[1]+

+wxv[2, 3, 2]x[3]v[2]+wxv[2, 3, 3]x[3]v[3]+wxy[2, 1, 2]x[1]y[2]+

+wxy[2, 2, 2]x[2]y[2]+wxy[2, 3, 2]x[3]y[2]+

+wvy[2, 1, 2]v[1]y[2]+wvy[2, 2, 2]v[2]y[2]+wvy[2, 3, 2]v[3]y[2]+

+wxvy[2, 1, 1, 2]x[1]v[1]y[2]+wxvy[2, 1, 2, 2]x[1]v[2]y[2]+

+wxvy[2, 1, 3, 2]x[1]v[3]y[2]+wxvy[2, 2, 1, 2]x[2]v[1]y[2]+

+wxvy[2, 2, 2, 2]x[2]v[2]y[2]+wxvy[2, 2, 3, 2]x[2]v[3]y[2]+

+wxvy[2, 3, 1, 2]x[3]v[1]y[2]+wxvy[2, 3, 2, 2]x[3]v[2]y[2]+

+wxvy[2, 3, 3, 2]x[3]v[3]y[2]= 0;

wx[3, 2]x[2]+wx[3, 3]x[3] +wv[3, 2]v[2]+wv[3, 3]v[3]+

+wy[3, 3]y[3]+wxv[3, 2, 2]x[2]v[2]+wxv[3, 2, 3]x[2]v[3]+

+wxv[3, 3, 2]x[3]v[2]+wxv[3, 3, 3]x[3]v[3]+

+wxy[3, 2, 3]x[2]y[3]+wxy[3, 3, 3]x[3]y[3]+

+wvy[3, 2, 3]v[2]y[3]+wvy[3, 3, 3]v[3]y[3]+

+wxvy[3, 2, 2, 3]x[2]v[2]y[3]+wxvy[3, 2, 3, 3]x[2]v[3]y[3]+

+wxvy[3, 3, 2, 2]x[3]v[2]y[3]+wxvy[3, 3, 3, 3]x[3]v[3]y[3] = 0.

(2)
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Для модели были выделены существенные компоненты состояния x , управления v и тре-
тьего параметра, в качестве которого может быть принята информация y (табл. 1).

Таблица 1.
Компоненты состояния, управления и информации.

x[1] Температура смотки для первой зоны участка полосы, ◦С
x[2] Температура смотки для второй зоны участка полосы, ◦С
x[3] Температура смотки для третьей зоны участка полосы, ◦С
v[1] Количество включенных полусекций охлаждения водой для первой зоны участка полосы, шт.
v[2] Количество включенных полусекций охлаждения водой для второй зоны участка полосы, шт.
v[3] Количество включенных полусекций охлаждения водой для третьей зоны участка полосы, шт.
y[1] Температура охлаждающей воды,◦С
y[2] Температура охлаждающей воды,◦С
y[3] Температура охлаждающей воды,◦С

Зададим значения компонентов состояния, управления и информации и проведем иденти-
фикацию трилинейной окрестной модели по разработанным ранее алгоритмам [2].

Значения состояния в соответствии с технологическими параметрами (рис. 1):
x[1]=587 ◦ C; x[2]=573 ◦ С; x[3]=587 ◦ С.

Рис. 1: Пример распределения температуры смотки по зонам участка полосы

Значения управления в соответствии с технологическими параметрами:
v[1]=15 шт.; v[2]=28 шт.; v[3]=18 шт.
Значения информации в соответствии с технологическими параметрами: y[1] = y[2] =

= y[3]=40 ◦ C. В связи с разным порядком входных данных производим их нормализацию
по формуле:

x
′
=
x− x

σ
,

где x – нормализуемое значение, x – среднее арифметическое, σ – среднеквадратическое
отклонение значений.

После нормализации получаем:
x[1]= 0, 70711 ; x[2]=−1, 41421 ; x[3]= 0, 70711 ;
v[1]=−0, 95962 ; v[2]= 1, 37945 ; v[3] =−0, 41983 ;
y[1]= y[2]= y[3]= 1 .
Примем, что wy[1, 1]=wy[2, 2]=wy[3, 3]= 1 . В результате идентификации получаем:
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wx [1,1]= -0,029; wx [1,2]= 0,057; wv [1,1]= 0,039;
wv [1,2]= -0,056; wxv [1,1,1]= 0,027; wxv [1,1,2]= -0,039;
wxv [1,2,1]= -0,055; wxv [1,2,2]= 0,079; wxy [1,1,1]= -0,029;
wxy [1,2,1]= 0,057; wvy [1,1,1]= 0,039; wvy [1,2,1]= -0,056;
wxvy [1,1,1,1]= 0,027; wxvy [1,1,2,1]= -0,039; wxvy [1,2,1,1]= -0,055;
wxvy [1,2,2,1]= 0,079; wx [2,1]= -0,024; wx [2,2]= 0,047;
wx [2,3]= -0,024; wv [2,1]= 0,032; wv [2,2]= -0,046;
wv [2,3]= 0,014; wxv [2,1,1]= 0,023; wxv [2,1,2]= -0,033;
wxv [2,1,3]= 0,009896; wxv [2,2,1]= -0,045; wxv [2,2,2]= -0,065;
wxv [2,2,3]= -0,02; wxv [2,3,1]= 0,023; wxv [2,3,2]= -0,033;
wxv [2,3,3]= 0,009896; wxy [2,1,2]= -0,024; wxy [2,2,2]= 0,047;
wxy [2,3,2]= -0,024; wvy [2,1,2]= 0,032; wvy [2,2,2]= -0,046;
wvy [2,3,2]= 0,014; wxvy [2,1,1,2]= 0,023; wxvy [2,1,2,2]= -0,033;
wxvy [2,1,3,2]= 0,009896; wxvy [2,2,1,2]= -0,045; wxvy [2,2,2,2]= 0,065;
wxvy [2,2,3,2]= -0,02; wxvy [2,3,1,2]= 0,023; wxvy [2,3,2,2]= -0,033;
wxvy [2,3,3,2]= 0,009893; wx [3,2]= 0,072; wx [3,3]= -0,036;
wv [3,2]= -0,071; wv [3,3]= 0,021; wxv [3,2,2]= 0,1;
wxv [3,2,3]= -0,03; wxv [3,3,2]= -0,05; wxv [3,3,3]= 0,015;
wxy [3,2,3]= 0,072; wxy [3,3,3]= -0,036; wvy [3,2,3]= -0,071;
wvy [3,3,3]= 0,021; wxvy [3,2,2,3]= 0,1; wxvy [3,2,3,3]= -0,03;
wxvy [3,3,2,3]= -0,05; wxvy [3,3,3,3]= 0,015.

3. Параметрическое представление
Выразим окрестностные переменные x , v и y через параметрическую переменную U . В

качестве примера возьмем представление компонента управления v . Укажем границы допу-
стимых значений компонента управления третьего узла:

vmin = 0; vmax = 80.

Примем, что значение U изменяется от U1 до U2 , которые взяты константами.
Таблица 2

Пример параметрического представления компонента v
U v v нормализ.

-1000 0 -3,65854
-900 4 -2,93882
-800 8 -2,21911
-700 12 -1,4994
-600 16 -0,77969
-500 20 -0,05998
-400 24 0,659736
-300 28 1,379448
-200 32 2,099161
-100 36 2,818873

0 40 3,538585
100 44 4,258297
200 48 4,978009
300 52 5,697721
400 56 6,417434
500 60 7,137146
600 64 7,856858
700 68 8,57657
800 72 9,296282
900 76 10,01599
1000 80 10,73571
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Линейные зависимости представлены ниже:

x[1] = x[3] = 0.0015U + 1.1617;x[2] = 0.0015U − 1.8688;

v[1] = v[2] = v[3] = 0.0072U + 3.5386;

y[1] = y[2] = y[3] = 0.0005U + 1;

Подставляя приведенные зависимости в систему (1) и, складывая уравнения, получаем
общее параметрическое уравнение окрестностной модели:

Z = −0.00285 · U + 1.11056 · 10−7 · U2 + 2.5266 · 10−10 · U3 − 0.0259 (3)

4. Условие наличия экстремумов
По аналогии с (3) рассмотрим функцию

Va,b(x) = x3 + a · x2 + b · x (4)

первая и вторая производные которой имеют вид:

dV

dx
= 3x2 + 2ax+ b (5)

d2V

dx2
= 6x+ 2a (6)

Исключая x из уравнений (6) и (7), получим уравнение параболы (рис. 2):

b =
1

3
a2 (7)

Рис. 2: Поверхность параболы b=
1

3
a2

Определим вид экстремумов выражения (4) в зависимости от условия (7). Для этого найдем
критические точки, решив уравнение (5).

D = (2a)2 − 4 · 3 · b = 4a2 − 12b;

U1,2 =
−2a

2 · 3
±

√
4a2 − 12b

2 · 3
.
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Далее возможны два варианта развития событий:

1) при условии b>
1

3
a2 ,

√
4a2− 12b<0 – действительных корней нет, т. е. нет критических

точек;

2) при условии b<
1

3
a2 ,

√
4a2− 12b> 0 , т. е. имеются критические точки:

U1,2 =
−1

3
a± 1

3

√
a2 − 3b

Определим характер критических точек, подставив их значения в уравнение (6):

U1 =
−1

3
a+

1

3

√
a2 − 3b,

6U + 2a = 6[
−1

3
a+

1

3

√
a2 − 3b] + 2a = −2a+ 2

√
a2 − 3b+ 2a = 2

√
a2 − 3b > 0,

– критическая точка U1 является точкой минимума;

U1 =
−1

3
a− 1

3

√
a2 − 3b,

6U + 2a = 6[
−1

3
a− 1

3

√
a2 − 3b] + 2a = −2a− 2

√
a2 − 3b+ 2a = −2

√
a2 − 3b < 0,

– критическая точка U2 является точкой максимума.

Таким образом, при условии b<
1

3
a2 (темная зона на рис. 2), функция (4) имеет две крити-

ческие точки типа минимум и максимум, а при b>
1

3
a2 (светлая зона на рис. 2) критических

точек нет.
5. Результаты
Приведем общее параметрическое уравнение (3) к стандартному виду:

Z = U3 + 439.547U2 − 1.13 · 10−7 − 1.025 · 108 (8)

Выполняется условие b<
1

3
a2 , т.е. −1.13 · 10−7<

1

3
(439.547)2 . Поэтому функция (8) име-

ет одну точку минимума U = 1799, 7 и одну точку максимума U =−2092, 8 . При обратном
переходе от параметрической переменной к окрестностным, подставляя значения U , соот-
ветствующие минимуму и максимуму, значения x , v и y выходят за пределы допустимых
значений. Это означает, что при работе в положениях стабильного (минимум) или нестабиль-
ного (максимум) равновесия получаем нарушение технологии.

Подстановка найденных значений параметров в уравнения указывает некоторое отклоне-
ние от правой части. Минимизация же модуля общего параметрического уравнения (3) при-
водит к отклонению 6, 4 · 10−9 .

При этом получаем точку минимума U =−9.07 , которой соответствуют окрестностные
переменные x[1] = x[3] = 590◦ C, x[2] = 570◦ C, v = 40 шт., y[1] = y[2] = y[3] = 39, 8◦ C, где
v = 0.25v[1] + 0.5v[2] + 0.25v[3] – среднее по длине участка полосы количество включенных
полусекций охлаждения водой.

При работе системы при значениях параметров, отличных от точек экстремума, систе-
ма находится в области, в которой невозможно с определенностью говорить об устойчивости
системы. При такой работе могут изменяться значения коэффициентов общего параметриче-

ского уравнения, что влечет за собой риск возникновения обратного условия b>
1

3
a2 , что, в
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соответствии с [5], говорит о потере положения равновесия и возможности перехода системы
в новое состояние.

6. Заключение
В работе получена математическая трилинейная окрестностная модель процесса формиро-

вания температуры смотки горячекатаной полосы, представлена методика определения соста-
ва экстремумов по коэффициентам функции. Предложена гипотеза об областях устойчивости
системы. Разработанная математическая окрестностная модель может учитывать и другие
технологические параметры процесса прокатки и химического состава стали.
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TRILINEAR NEIGHBORHOOD MODEL OF THE PROCESS
OF FORMING THE TEMPERATURE OF HOT-ROLLED STRIP COILING

c⃝ A.M. Shmyrin, A.G. Yartsev, V.V. Pravilnikova

The trilinear neighborhood model of the process of forming the temperature of hot-rolled
strip coiling where the parameters are a state, control and information is considered. The
purpose of the work is to find the values of the components of the model ensuring steady
functioning of the system. The technique of defining the structure of the extrema is presented.
The existence condition for extrema is received and checked on a concrete example. The
suggestion about the area in which it is impossible to speak with definiteness about stability
of the system is made. The hypothesis about a condition of the stable balance loss and of
the transition of system to a new state is proposed.
Key words: neighborhood system, hot-rolled strip, run-off table, coiling temperature, general
parametric equation.
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