UDK 517.98

DOI: 10.20310/1810-0198-2017-22-6-1218-1228

CANONICAL AND BOUNDARY REPRESENTATIONS ON THE LOBACHEVSKY PLANE ASSOCIATED WITH LINEAR BUNDLES

© L.I. Grosheva

Tambov State University named after G.R. Derzhavin, 33 Internatsionalnaya st., Tambov, Russian Federation, 392000 E-mail: gligli@mail.ru

We describe canonical representations on the Lobachevsky plane, associated with sections of linear bundles, corresponding boundary representations and Poisson and Fourier transforms. *Keywords:* Lobachevsky plane; canonical representations; distributions; boundary representations; Poisson and Fourier transforms

We give a generalization of the work [1] where we studied canonical and boundary representations of the group $G = \mathrm{SU}\,(1,1)$ on the Lobachevsky plane D. Canonical representations in [1] are deformations of the quasi-regular representation U of G on D. Now we study similar deformations of representations of G in the space sections of linear bundles on D, or, what is the same, deformations of representations of G induced by characters of a maximal compact subgroup K. See also our note [2].

\S 1. Canonical representations associated with a character of K

The Lobachevsky plane is the unit disk $D: z\overline{z} < 1$ on the complex plane with the linear-fractional action of G:

$$z\mapsto z\cdot g=\frac{az+\overline{b}}{bz+\overline{a}}\,,\quad g=\left(\begin{array}{cc}a&b\\\overline{b}&\overline{a}\end{array}\right)\,,\quad a\overline{a}-b\overline{b}=1.$$

The boundary S of D is the circle $z\overline{z}=1$, it consists of points $s=\exp i\alpha$, the measure ds on S is $d\alpha$. Let \overline{D} be the closure of $D:\overline{D}=D\cup S$. The stabilizer of the point z=0 is the maximal compact subgroup $K=\mathrm{U}(1)$ consisting of diagonal matrices:

$$k = \begin{pmatrix} a & 0 \\ 0 & \overline{a} \end{pmatrix}, \quad a\overline{a} = 1, \tag{1.1}$$

so that D = G/K. Recall principal non-unitary series representations of G trivial on the center. Let $\sigma \in \mathbb{C}$. The representation T_{σ} acts on the space $\mathcal{D}(S)$ by

$$(T_{\sigma}(g)\varphi)(s) = \varphi(s \cdot g)|bs + \overline{a}|^{2\sigma}.$$

If $\sigma \notin \mathbb{Z}$, then T_{σ} is irreducible and equivalent to $T_{-\sigma-1}$ (for $\sigma \in \mathbb{Z}$ there is a "partial equivalence"). The following operator A_{σ} acts on $\mathcal{D}(S)$ and intertwines T_{σ} and $T_{-\sigma-1}$:

$$(A_{\sigma}\varphi)(s) = \int_{S} |1 - s\overline{u}|^{-2\sigma - 2} \varphi(u) du, \qquad (1.2)$$

exponents s^n are eigenfunctions for A_{σ} with eigenvalues $a_n(\sigma)$:

$$a_n(\sigma) = 2\pi (-1)^n \frac{\Gamma(-2\sigma - 1)}{\Gamma(-\sigma + n) \Gamma(-\sigma - n)}.$$
 (1.3)

We shall use denotation

$$a^{[q]} = a(a+1)\dots(a+q-1), \quad z^{\mu, n} = |z|^{\mu} \left(\frac{z}{|z|}\right)^{n}, \quad \mu \in \mathbb{C}, \ n \in \mathbb{Z}, \ q \in \mathbb{N}.$$

Let $\lambda \in \mathbb{C}$, $m \in \mathbb{Z}$. We define the *canonical representation* $R_{\lambda,m}$ of the group G as follows:

$$(R_{\lambda,m}(g)f)(z) = f(z \cdot g)(bz + \overline{a})^{-2\lambda - 4,2m},$$

it acts on the space $\mathcal{D}(\overline{D})$. This space consists of functions $f(z)=f(z,\overline{z})$ such that for any $f\in\mathcal{D}(\overline{D})$ there is a neighbourhood U of \overline{D} such that f belongs to $\mathcal{D}(U)$. The representation $R_{\lambda,m}$ is the restriction to G of a representation of the overgroup $\widetilde{G}=\mathrm{SL}(2,\mathbb{C})$.

Introduce the inner product

$$\langle f, h \rangle_D = \int_D f(z) \, \overline{h(z)} \, dx dy, \ z = x + iy.$$
 (1.4)

It is invariant with respect to the pair $(R_{\lambda,m}, R_{-\overline{\lambda}-2,m})$:

$$\langle R_{\lambda,m}(g)f, h \rangle_D = \langle f, R_{-\overline{\lambda}-2,m}(g^{-1})h \rangle_D,$$
 (1.5)

where $g \in G$. Let us define the operator $Q_{\lambda,m}$ – first on $\mathcal{D}(D)$:

$$(Q_{\lambda,m}f)(z) = c(\lambda,m) \int_{D} (1-z\overline{w})^{2\lambda,2m} f(w) du dv,$$

where

$$c(\lambda, m) = \frac{-\lambda + m - 1}{\pi} .$$

It intertwines $R_{\lambda,m}$ and $R_{-\lambda-2,m}$:

$$Q_{\lambda m} R_{\lambda m}(g) = R_{-\lambda - 2, m}(g) Q_{\lambda m}, \quad g \in G,$$

and interacts with the form (1.4) as follows:

$$\langle Q_{\lambda,m}f, h \rangle_D = \langle f, Q_{\overline{\lambda},m} h \rangle_D.$$
 (1.6)

The formulae (1.5) and (1.6) allow to extend the representation $R_{\lambda,m}$ and the operator $Q_{\lambda,m}$ to the space $\mathcal{D}'(\overline{D})$ of distributions on \overline{D} .

§ 2. Boundary representations

Any canonical representation of the group G generates 2 representations related to the boundary S of the disk D (see $L_{\lambda,m}$ and $M_{\lambda,m}$ below).

Introduce on \mathbb{C} polar coordinates $(r,s): z=rs, r \geqslant 0, s \in S$. Let

$$p = 1 - z\overline{z} = 1 - r^2,$$

so that $D = \{p > 0\}$ and $S = \{p = 0\}$. The Euclidean measure dxdy on D is (1/2) dp ds. Consider the Taylor series of $f \in \mathcal{D}(\overline{D})$ in powers of p:

$$f(z) \sim a_0 + a_1 p + a_2 p^2 + \cdots,$$
 (2.1)

where $a_k = a_k(s)$ are functions in $\mathcal{D}(S)$:

$$a_k(s) = \frac{1}{k!} \left(\frac{\partial}{\partial p} \right)^k \Big|_{p=0} f(z).$$

Denote by $\Sigma_k(\overline{D})$ the space of distributions on $\mathbb C$ concentrated at S and of the form

$$\zeta = \varphi_0(s) \,\delta(p) + \varphi_1(s) \,\delta'(p) + \dots + \varphi_k(s) \,\delta^{(k)}(p), \tag{2.2}$$

where $\delta(p)$ is the Dirac delta function on the real line (being a continuous linear functional on $\mathcal{D}(\mathbb{R})$) and $\delta^{(j)}(p)$ its j-th derivative. Set

$$\Sigma(\overline{D}) = \bigcup_{k=0}^{\infty} \Sigma_k(\overline{D}).$$

There is a natural filtration

$$\Sigma_0(\overline{D}) \subset \Sigma_1(\overline{D}) \subset \Sigma_2(\overline{D}) \subset \cdots$$
 (2.3)

A distribution $\varphi(s) \, \delta^{(l)}(p)$ acts on a function $f \in \mathcal{D}(\overline{D})$ as follows:

$$\langle \varphi(s) \, \delta^{(l)}(p), f \rangle = \frac{1}{2} (-1)^l \, l! \, \langle \varphi, a_l \rangle_S.$$

The canonical representation $R_{\lambda,m}$ acting on $\mathcal{D}'(\overline{D})$, preserves the space $\Sigma(\overline{D})$ and the filtration (2.3). Denote by $L_{\lambda,m}$ the restriction of $R_{\lambda,m}$ to $\Sigma(\overline{D})$. Let us assign to the distribution (2.2) the column $(\varphi_0, \varphi_1, \ldots, \varphi_k, 0, 0, \ldots)$.

Lemma 2.1. On these columns the representation $L_{\lambda,m}$ is a upper triangular matrix. It is equivalent to a upper triangular matrix with diagonal $T_{-\lambda-1}$, $T_{-\lambda}$, $T_{-\lambda+1}$,.... The equivalence is given by multiplication of the functions $\varphi_k(s)$ by s^{-m} .

Proof. Set $\varphi_k(s) s^{-m} = \psi_k(s)$. We have to trace how the operator $L_{\lambda,m}(g)$ $(g \in G)$ acts on the distribution $\psi_k(s) s^m \cdot \delta^{(k)}(p)$. This distribution is mapped on

$$\psi_k(\widetilde{s})\,\widetilde{s}^m\,\delta^{(k)}(\widetilde{p})\,(bz+\overline{a})^{-2\lambda-4,2m}.\tag{2.4}$$

Since $\widetilde{p} = p \cdot |bz + \overline{a}|^{-2}$ and $\delta^{(k)}(p)$ is homogeneous of degree -k-1, the distribution (2.4) is equal to

$$\psi_k(\widetilde{s}) \, \widetilde{s}^m \, (bz + \overline{a})^{-2\lambda - 2 - 2k, 2m} \, \delta^{(k)}(p)$$

$$= \psi_k(\widetilde{s}) \, \widetilde{s}^m \, (bs + \overline{a})^{-2\lambda - 2 - 2k, 2m} \, \delta^{(k)}(p) + \cdots, \tag{2.5}$$

where the dots means a distribution in $\Sigma_{k-1}(\overline{D})$. Since $\overline{s} = s^{-1}$, we have

$$\widetilde{s} = \frac{as + \overline{b}}{bs + \overline{a}} = s \cdot \frac{\overline{b}\overline{s} + a}{bs + \overline{a}} = s \cdot (bs + \overline{a})^{0, -2}, \tag{2.6}$$

so that the distribution (2.5) is equal to

$$\psi_k(\widetilde{s}) |bs + \overline{a}|^{-2\lambda - 2 + 2k} \cdot s^m \delta^{(k)}(p) + \cdots$$

The factor in front of $s^m \delta^{(k)}(p)$ is precisely $(T_{-\lambda-1+k}(g)\psi_k)(s)$.

For $f \in \mathcal{D}(\overline{D})$, let a(f) denote the column (a_0, a_1, \ldots) of the Taylor coefficients of f, see (2.1). The representation $M_{\lambda,m}$ acts on these columns by:

$$M_{\lambda,m}(g) a(f) = a(R_{\lambda,m}(g)f).$$

Lemma 2.2. The representation $M_{\lambda,m}$ is a lower triangular matrix. It is equivalent to a lower triangular matrix with diagonal $T_{-\lambda-2}, T_{-\lambda-3}, \ldots$ The equivalence is given by multiplication of the Taylor coefficients $a_k(s)$ by s^{-m} .

Proof. By expanding functions in a Taylor series, we find that the k-th Taylor coefficient of the function $f^g(z) = (R_{\lambda,m}(g)f)(z)$ is

$$a_k(\widetilde{s}) (bs + \overline{a})^{-2\lambda - 4 - 2k, 2m} + \cdots$$

$$= a_k(\widetilde{s}) \widetilde{s}^{-m} |bs + \overline{a}|^{-2\lambda - 4 - 2k} \cdot s^m + \cdots, \tag{2.7}$$

where the dots means a linear combination of $a_0(\widetilde{s}), \ldots, a_{k-1}(\widetilde{s})$ whose coefficients are some functions of s. Here we used again that $\widetilde{p} = p \cdot |bz + \overline{a}|^{-2}$ and formula (2.6). Now setting $a_k(s) = d_k(s) s^m$, we see from (2.7) that the coefficient $d_p^g(s)$ for $f^g(s)$ is $(T_{-\lambda-2-k}(g) d_k)(s) + \cdots$.

§ 3. Poisson transform

Let $\lambda, \sigma \in \mathbb{C}$ and $m \in \mathbb{Z}$. We define the Poisson transform associated with the canonical representation $R_{\lambda,m}$ as the map $P_{\lambda,\sigma}^{(m)}: \mathcal{D}(S) \to C^{\infty}(D)$ by the following formula

$$\left(P_{\lambda,\sigma}^{(m)}\varphi\right)(z) = p^{-\lambda-\sigma-2} \int_{S} (1-s\overline{z})^{2\sigma,-2m} s^{m} \varphi(s) ds. \tag{3.1}$$

Theorem 3.1. The Poisson transform $P_{\lambda,\sigma}^{(m)}$ intertwines the representations $T_{-\sigma-1}$ and the canonical representation $R_{\lambda,m}$:

$$R_{\lambda,m}(g) P_{\lambda,\sigma}^{(m)} = P_{\lambda,\sigma}^{(m)} T_{-\sigma-1}(g) \quad (g \in G).$$

Theorem 3.2. With the intertwining operators A_{σ} and $Q_{\lambda,m}$ the Poisson transform $P_{\lambda,\sigma}^{(m)}$ interacts as follows:

$$P_{\lambda,\sigma}^{(m)} A_{\sigma} = a_{-m}(\sigma) P_{\lambda,-\sigma-1}^{(m)}, \tag{3.2}$$

$$Q_{\lambda,m} P_{\lambda,\sigma}^{(m)} = \Lambda^{(m)}(\lambda,\sigma) P_{-\lambda-2,\sigma}^{(m)}, \tag{3.3}$$

where

$$\Lambda^{(m)}(\lambda,\sigma) = \frac{\Gamma(-\lambda+\sigma)\,\Gamma(-\lambda-\sigma-1)}{\Gamma(-\lambda-m)\,\Gamma(-\lambda+m-1)}\,.$$

Proof. Formula (3.2) follows immediately from (3.1). Let us prove (3.3). Applying the operator $Q_{\lambda,m} P_{\lambda,\sigma}^{(m)}$ to a function $\varphi \in \mathcal{D}(S)$, we get the multiple integral:

$$\left(Q_{\lambda,m} P_{\lambda,\sigma}^{(m)} \varphi\right)(z) = c(\lambda,m) \int_{D} (1 - z\overline{w})^{2\lambda,2m} (1 - w\overline{w})^{-\lambda-\sigma-2} du dv
\times \int_{S} (1 - s\overline{w})^{2\sigma,-2m} s^{m} \varphi(s) ds, \quad w = u + iv$$
(3.4)

By (3.1), the function $\left(P_{\lambda,\sigma}^{(m)}\varphi\right)(z)$ behaves as $C_1\,p^{-\lambda-\sigma-2}+C_2\,p^{-\lambda+\sigma-1}$ when $p\to 0$. Therefore, the integral (3.4) converges absolutely for $\operatorname{Re}\sigma>-1/2$, $\operatorname{Re}(\lambda+\sigma)<-1$, $\operatorname{Re}(-\lambda+\sigma)>0$, and we can then change the order of integration. We obtain

$$\left(Q_{\lambda,m} P_{\lambda,\sigma}^{(m)} \varphi\right)(z) = c(\lambda,m) \int_{S} K(z,s) s^{m} \varphi(s) ds, \tag{3.5}$$

where the kernel K(z,s) is given by

$$K(z,s) = \int_{D} (1 - z\overline{w})^{2\lambda,2m} (1 - w\overline{w})^{-\lambda - \sigma - 2} (1 - s\overline{w})^{2\sigma,-2m} dudv.$$

Let us compute it. Using the formula

$$1 - \widetilde{z}\overline{\widetilde{w}} = \frac{1 - z\overline{w}}{(bz + \overline{a})(\overline{b}\overline{w} + a)}$$

and similar formulae with replacing z by s and by w, we find that the kernel K(z,s) has the following invariance property:

$$K(\widetilde{z},\widetilde{s})(bz+\overline{a})^{2\lambda,2m}(bs+\overline{a})^{2\sigma,-2m}=K(z,s).$$

Take here z=0, s=1 and write z and s instead of \tilde{z} and \tilde{s} respectively. Then we have

$$K(z,s) = K(0,1) a^{-2\lambda,2m} (b+\overline{a})^{-2\sigma,2m}$$
(3.6)

and

$$z = \frac{\overline{b}}{\overline{a}}, \quad s = \frac{a + \overline{b}}{b + \overline{a}}.$$

For these z and s we find

$$1 - z\overline{z} = \frac{1}{a\overline{a}}, \quad 1 - s\overline{z} = 1 - \frac{a + \overline{b}}{b + \overline{a}} \cdot \frac{b}{a} = \frac{1}{a(b + \overline{a})},$$

so that

$$a^{-2\lambda,2m} (b+\overline{a})^{-2\sigma,2m} = (1-z\overline{z})^{\lambda-\sigma} (1-s\overline{z})^{2\sigma,-2m}.$$
 (3.7)

It remains to compute K(0,1):

$$K(0,1) = \int_{D} (1 - w\overline{w})^{-\lambda - \sigma - 2} (1 - w)^{2\sigma, 2m} dudv.$$
 (3.8)

Expand $(1-w)^{2\sigma,2m}$ in a binomial series:

$$(1-w)^{2\sigma,2m} = (1-w)^{\sigma+m} (1-\overline{w})^{\sigma-m}$$
$$= \sum_{q,j=0}^{\infty} {\sigma+m \choose q} {\sigma-m \choose j} (-1)^{q+j} w^q \overline{w}^j.$$

A non-zero contribution to (3.8) is given by the terms with q = j only, so that

$$K(0,1) = \sum_{q=0}^{\infty} \begin{pmatrix} \sigma+m \\ q \end{pmatrix} \begin{pmatrix} \sigma-m \\ q \end{pmatrix} \int_{D} (1-w\overline{w})^{-\lambda-\sigma-2} (w\overline{w})^{q} du dv.$$

The latter integral is equal to $B(q+1, -\lambda - \sigma - 1)$, so that

$$\begin{split} K(0,1) &= \pi \sum_{q=0}^{\infty} \frac{(\sigma+m)^{[q]} \left(\sigma-m\right)^{[q]}}{q!} \cdot \frac{\Gamma(-\lambda-\sigma-1)}{\Gamma(-\lambda-\sigma+q)} \\ &= \pi \sum_{q=0}^{\infty} \frac{(-\sigma-m)^{[q]} \left(-\sigma+m\right)^{[q]}}{(-\lambda-\sigma-1)^{[q+1]} \, q!} \\ &= \frac{\pi}{-\lambda-\sigma-1} \sum_{q=0}^{\infty} \frac{(-\sigma-m)^{[q]} \left(-\sigma+m\right)^{[q]}}{(-\lambda-\sigma)^{[q]} \, q!} \\ &= \frac{\pi}{-\lambda-\sigma-1} \, F(-\sigma-m,-\sigma+m;-\lambda-\sigma;1) \\ &= \pi \frac{\Gamma(-\lambda-\sigma-1) \, \Gamma(-\lambda+\sigma)}{\Gamma(-\lambda+m) \, \Gamma(-\lambda-m)} \\ &= \frac{1}{c(\lambda,m)} \, \Lambda^{(m)}(\lambda,\sigma). \end{split}$$

Thus, collecting (3.5), (3.6) and (3.7), we obtain

$$\left(Q_{\lambda,m} P_{\lambda,\sigma}^{(m)} \varphi\right)(z) = \Lambda^{(m)}(\lambda,\sigma) p^{\lambda-\sigma} \int_{S} (1-s\overline{z})^{2\sigma,-2m} s^{m} \varphi(s) ds,$$

which is just (3.3).

Theorem 3.3. Introduce on D polar coordinates $r, s: z = rs, 0 \le r \le 1, s \in S$. Let $2\sigma \notin \mathbb{Z}$. For any K-finite function $\varphi \in \mathcal{D}(S)$, the Poisson transform $P_{\lambda,\sigma}^{(m)} \varphi$ of φ has the following expansion in powers of $p = 1 - r^2$:

$$\left(P_{\lambda,\sigma}^{(m)}\varphi\right)(z) = p^{-\lambda-\sigma-2} s^m \sum_{k=0}^{\infty} \left(C_{\sigma,k}^{(m)}\varphi\right)(s) \cdot p^k
+ p^{\lambda+\sigma-1} s^m \sum_{k=0}^{\infty} \left(D_{\sigma,k}^{(m)}\varphi\right)(s) \cdot p^k.$$
(3.9)

Let us the factors $p^{\lambda-\sigma-2}$ and $p^{-\lambda+\sigma-1}$ in (3.9) leading factors. The factors yield that $P_{\lambda,\sigma}^{(m)}$ is meromorphic in σ , and has poles at the points

$$\sigma = \lambda - k, \quad \sigma = -\lambda - 1 + l \quad (k, l \in \mathbb{N}).$$
 (3.10)

All poles are simple except in the case when the two sequences (3.10) have a non-empty intersection and the pole belongs to this intersection. This happens when $2\lambda+1\in\mathbb{N}$ and $0\leqslant k,\ l\leqslant 2\lambda+1,$ $k+l=2\lambda+1$. In this case the pole μ is of the second order. Let us write down the principal part of the Laurent series of $P_{\lambda,\sigma}^{(m)}$ at the poles μ of the first and the second order respectively:

$$P_{\lambda,\sigma}^{(m)} = \frac{\widehat{P}_{\lambda,\mu}^{(m)}}{\sigma - \mu} + \cdots$$
(3.11)

$$P_{\lambda,\sigma}^{(m)} = \frac{\widehat{\widehat{P}}_{\lambda,\mu}^{(m)}}{(\sigma - \mu)^2} + \frac{\widehat{P}_{\lambda,\mu}^{(m)}}{\sigma - \mu} + \cdots$$
(3.12)

The first Laurent coefficient ($\widehat{P}_{\lambda,\mu}^{(m)}$ and $\widehat{\widehat{P}}_{\lambda,\mu}^{(m)}$ respectively) intertwines $T_{-\mu-1}$ with $R_{\lambda,m}$.

Let us write down the Laurent coefficients in (3.11) and (3.12) explicitly. For that we introduce the following differential operators $W_{\sigma,k}^{(m)}$ on S . Let us set

$$V_{\sigma,m,n}(p) = (1-p)^{(m+n)/2} F(\sigma+1+m,\sigma+1+n;2\sigma+2;p)$$

where F is the Gauss hypergeometric function. Expand V in powers of p:

$$V_{\sigma,m,n}(p) = \sum_{k=0}^{\infty} w_{\sigma,k}^{(m)}(n) p^k,$$

here $w_{\sigma,k}^{(m)}$ are polynomials in n of degree k. The coefficients of these polynomials are rational functions of σ with simple poles at $\sigma = -1, -3/2, \ldots, (-k-1)/2$. Now we set

$$W_{\sigma,k}^{(m)} = w_{\sigma,k}^{(m)} \left(\frac{1}{i} \frac{d}{d\alpha} \right).$$

If a pole μ belongs only to one of the sequences (3.10), then it is simple and

$$\widehat{P}_{\lambda,\lambda-k}^{(m)} = (-1)^{k+m} \frac{1}{k!} a_{-m}(\lambda - k) \xi_{\lambda,k}^{(m)}, \tag{3.13}$$

$$\widehat{P}_{\lambda,-\lambda-1+l}^{(m)} = (-1)^{l+m} \frac{1}{l!} \xi_{\lambda,l}^{(m)} \circ A_{\lambda-l}, \tag{3.14}$$

where $\xi_{\lambda,k}^{(m)}$ is the following operator $\mathcal{D}(S) \to \Sigma_k(\overline{D})$:

$$\xi_{\lambda,k}^{(m)} \varphi = s^m \sum_{n=0}^{k} (-1)^n \frac{k!}{(k-n)!} \left(W_{\lambda-k,n}^{(m)} \varphi \right) (s) \, \delta^{(k-n)}(p). \tag{3.15}$$

The operator $\xi_{\lambda,k}^{(m)}$ is meromorphic in λ . For fixed $k=1,2\ldots$ it has poles (simple) at the points

$$\lambda = k - 1, \ k - 3/2, \ k - 2, \dots, \frac{k - 1}{2}$$

(k poles in total). It intertwines $T_{-\lambda-1+k}$ with $L_{\lambda,m}$ (restricted to $\Sigma_k(\overline{D})$). A number $\lambda_0 \in \mathbb{N}/2$ is a pole for $\xi_{\lambda,k}^{(m)}$ for those k that satisfy

$$\lambda_0 + 1 \leq k \leq 2\lambda_0 + 1$$
.

In particular, let $\lambda_0 \in \mathbb{N}$. Denote by $\widehat{\xi}_{\lambda_0,k}^{(m)}$ the residue of $\xi_{\lambda,k}^{(m)}$ at $\lambda = \lambda_0$ and denote by $\widehat{W}_{\tau,k}^{(m)}$ the residue of $W_{\sigma,k}^{(m)}$ at the pole $\sigma = \tau$. The contribution to the residue of $\xi_{\lambda,k}^{(m)}$ is given by the summands in (3.15) for which $n \geqslant 2k - 2\lambda_0 - 1$. So we have (we omit the index 0) for $\lambda \in \mathbb{N}$ and $\lambda + 1 \leqslant k \leqslant 2\lambda + 1$:

$$\xi_{\lambda,k}^{(m)}\varphi = s^m \sum_{n=2k-2\lambda-1}^k (-1)^n \frac{k!}{(k-n)!} \left(\widehat{W}_{\lambda-k,n}^{(m)}\varphi\right)(s) \cdot \delta^{(k-n)}(p).$$

Let the pole μ belong to both sequences (3.10). This happens when $2\lambda + 1 \in \mathbb{N}$. Then $\mu = \lambda - k =$ $= -\lambda - 1 - l$, where $k, l \in \mathbb{N}$, so that $k + l = 2\lambda + 1$ and $l - k = 2\mu + 1$.

Let first $\lambda \in \mathbb{N}$. Then the pole μ is of the second order $(m \neq 0)$. Here we have a difference with the case m=0: in that case the pole μ was of the first order.

We shall write down, for $\lambda \in \mathbb{N}$, only the first Laurent coefficients \widehat{P} . The expressions for the residues are rather complicated and not interesting for us, even more because they turn out to be not concentrated at S.

If $\lambda + 1 \le k \le 2\lambda + 1$ (so that k > l and $\mu \le -1$), then

$$\widehat{\widehat{P}}_{\lambda,\lambda-k}^{(m)} = (-1)^{k+m} \frac{1}{k!} a_{-m} (\lambda - k) \widehat{\xi}_{\lambda,k}^{(m)},$$

and if $\lambda + 1 \le l \le 2k + 1$ (so that k < l and $\mu \ge 0$), then

$$\widehat{\widehat{P}}_{\lambda,-\lambda-1+l}^{(m)} = (-1)^{l+m} \frac{1}{l!} \widehat{\xi}_{\lambda,l}^{(m)} \circ A_{\lambda-l}.$$

Therefore, the operator $\widehat{\xi}_{\lambda,k}^{(m)}$ intertwines $T_{-\lambda-1+k}$ with $L_{\lambda,m}$ restricted to $\Sigma_k(\overline{D})$. Let now $\lambda \in -1/2 + \mathbb{N}$. This case is similar to such a case for m = 0. The pole μ is of the

second order.

If $k \leq l$, then

$$\widehat{\widehat{P}}_{\lambda,\mu}^{(m)} = 2 \frac{(-1)^{k+m}}{k!} \widehat{a}_{-m}(\mu) \, \xi_{\lambda,k}^{(m)},
\widehat{P}_{\lambda,\mu}^{(m)} \varphi = -s^m \sum_{n=0}^{l} \frac{(-1)^{l-n}}{(l-n)!} \, \widetilde{C}_{\mu,n}^{(m)} \varphi \cdot \delta^{l-n}(p),$$

and if $k \ge l$, then

$$\widehat{\widehat{P}}_{\lambda,\mu}^{(m)} = 2 \frac{(-1)^{l+m}}{l!} \xi_{\lambda,l}^{(m)} \circ \widehat{A}_{\lambda-l},$$

$$\widehat{P}_{\lambda,\mu}^{(m)} \varphi = s^m \sum_{m=0}^k \frac{(-1)^{k-n}}{(k-n)!} \widetilde{D}_{\mu,n}^{(m)} \varphi \cdot \delta^{(k-n)}(p),$$

where $\hat{a}_{-m}(\mu)$ is the residue of $a_{-m}(\sigma)$ at $\sigma = \mu$ (\hat{A}_{τ} is the residue of A_{σ} at $\sigma = \tau$) and

$$\widetilde{C}_{\mu,n}^{(m)} = \begin{cases} C_{\mu,n}^{(m)}, & n < 2\mu + 1, \\ C_{\mu,n}^{0(m)} - D_{\mu,n-2\mu-1}^{0(m)}, & n \geqslant 2\mu + 1, \end{cases}$$

$$\widetilde{D}_{\mu,}^{(m)} = \begin{cases} D_{\mu,n}^{(m)}, & n < -2\mu - 1, \\ D_{\mu,n}^{0(m)} - C_{\mu,n+2\mu+1}^{0(m)}, & n \geqslant -2\mu - 1. \end{cases}$$

Theorem 3.4. Up to a factor, the composition of the operators $Q_{\lambda,m}$ and $\xi_{\lambda,k}^{(m)}$ is the Poisson transform $P_{-\lambda-2,\lambda-k}^{(m)}$:

$$Q_{\lambda,m} \, \xi_{\lambda,k}^{(m)} = q_{\lambda,k}^{(m)} \cdot P_{-\lambda-2,\lambda-k}^{(m)}, \tag{3.16}$$

where

$$q_{\lambda,k}^{(m)} = \frac{1}{2} (-1)^{k+m} k! a_{-m} (-\lambda - 1 + k) \Lambda_k^{(m)}(\lambda),$$

$$\Lambda_k^{(m)}(\lambda) = -\frac{1}{2\pi^2} (2\lambda - 2k + 1) \frac{\Gamma(\lambda + m + 1) \Gamma(\lambda - m + 2)}{k! \Gamma(2\lambda + 2 - k)}.$$
(3.17)

Proof. Taking the residue of both sides of (3.3) at $\sigma = \lambda - k$ and using (3.13), we obtain (3.16), where

$$q_{\lambda,k}^{(m)} = (-1)^{k+m} \, k! \, \frac{1}{a_{-m}(\lambda - k)} \operatorname{Res}_{\sigma = \lambda - k} \Lambda^{(m)}(\lambda, \sigma).$$

The latter residue is equal to

$$\frac{\pi}{2\lambda - 2k + 1} \operatorname{tg} \lambda \pi \cdot \Lambda_k^{(m)}(\lambda).$$

Finally, computing the product $a_{-m}(\sigma) a_{-m}(-\sigma - 1)$, we obtain expression (3.17).

Remark. Formula (3.3) seems to contain a contradiction: indeed, the Poisson transform $P_{-\lambda}^{(m)}$ in the right hand side has poles at the points $\sigma = \lambda + 1 + l$ and $\sigma = -\lambda - 2 - k$ $(k, l \in \mathbb{N})$, but the left hand side seems to have no poles at these points. In fact, the left hand side does have poles at these points; the poles in question are poles of distributions; the left hand side, regarded as a distribution, assigns to a function $f \in \mathcal{D}(\overline{D})$ the scalar

$$\langle Q_{\lambda,m} P_{\lambda,\sigma}^{(m)}, f \rangle_D = \langle P_{\lambda,\sigma}^{(m)}, Q_{\overline{\lambda},m} f \rangle_D,$$

but the function $Q_{\lambda,m}\overline{f}$ has asymptotics $C_1+C_2\,p^{2\lambda+2}$ when $p\to 0$, and the function $p^{2\lambda+2}$ together with the leading terms $p^{-\lambda-\sigma-2}$ and $p^{-\lambda+\sigma-1}$ of $P_{\lambda,\sigma}^{(m)}$ gives the desired poles.

§ 4. Fourier transform

Let $\lambda, \sigma \in \mathbb{C}$ and $m \in \mathbb{Z}$. We define the Fourier transform associated with the canonical representation $R_{\lambda,m}$ as the map $F_{\lambda,\sigma}^{(m)}: \mathcal{D}(\overline{D}) \to \mathcal{D}(S)$ by the following formula

$$\left(F_{\lambda,\sigma}^{(m)}f\right)(s) = s^{-m} \int_{D} (1-z\overline{z})^{2\sigma,2m} p^{\lambda-\sigma} f(z) dx dy.$$

The integral converges absolutely for Re $(\lambda - \sigma) > -1$, Re $(\lambda + \sigma) > -2$ and can be meromorphically continued in σ and λ .

Theorem 4.1. The Poisson and the Fourier transform are conjugate to each other:

$$\langle F_{\lambda,\sigma}^{(m)} f, \varphi \rangle_S = \langle f, P_{-\overline{\lambda}-2,\overline{\sigma}}^{(m)} \varphi \rangle_D.$$

This allows to transfer statements about the Poisson transform to the Fourier transform.

The Fourier transform interacts with the intertwining operators as follows:

$$A_{\sigma} F_{\lambda,\sigma}^{(m)} = a_{-m}(\sigma) F_{\lambda,-\sigma-1}^{(m)},$$

$$F_{-\lambda-2,\sigma}^{(m)} Q_{\lambda,m} = \Lambda^{(m)}(\lambda,\sigma) F_{\lambda,\sigma}^{(m)}.$$

It has poles in σ at the points

$$\sigma = -\lambda - 2 - k, \quad \sigma = \lambda + 1 + l \quad (k, l \in \mathbb{N}). \tag{4.1}$$

All poles are simple, except the case $-2\lambda - 3 \in \mathbb{N}$ and the pole μ belongs to both sequences (4.1), i.e $0 \le k, l \le -2\lambda - 3$ and $k + l = -2\lambda - 3$. In this case μ is of the second order.

For the Laurent coefficients of the Fourier transform we use a similar notation as in case of the Poisson transform.

The first Laurent coefficient (i.e. $\widehat{F}_{\lambda,\mu}^{(m)}$ if μ is of the first order and $\widehat{\widehat{F}}_{\lambda,\mu}^{(m)}$ if μ is of the second order) intertwines $R_{\lambda,m}$ with T_{μ}).

Let us write down $\widehat{F}_{\lambda,\mu}^{(m)}$ and $\widehat{\widehat{F}}_{\lambda,\mu}^{(m)}$ explicitly. If the pole μ belongs to one of the sequences (4.1), then it is simple and

$$\widehat{F}_{\lambda,-\lambda-2-k}^{(m)} = \frac{1}{2} (-1)^m a_{-m} (-\lambda - 2 - k) b_{\lambda,k}^{(m)},$$

$$\widehat{F}_{\lambda,\lambda+1+l}^{(m)} = -\frac{1}{2} (-1)^m A_{-\lambda-2-l} b_{\lambda,l}^{(m)},$$

where $b_{\lambda,k}^{(m)}$ is a "boundary" operator $\mathcal{D}(\overline{D}) \to \mathcal{D}(S)$ which is defined in terms of the Taylor coefficients c_n of f as follows:

$$b_{\lambda,k}^{(m)}(f) = \sum_{n=0}^{k} W_{-\lambda-2-k,k-n}^{(m)}(s^{-m}c_n).$$

theorem 4.1 now gives:

Theorem 4.2. The operators $\xi^{(m)}$ and $b^{(m)}$ are conjugate to each other (up to a factor):

$$\langle f, \xi_{-\overline{\lambda}-2,k}^{(m)} \varphi \rangle_D = \frac{1}{2} (-1)^k k! \langle b_{\lambda,k}^{(m)}(f), \varphi \rangle_S.$$

The operator $b_{\lambda,k}^{(m)}$ intertwines $R_{\lambda,m}$ with $T_{-\lambda-2-k}$. It is meromorphic in λ . For fixed $k=1,2,\ldots$ it has poles (simple) at the points:

$$\lambda = -k - 1, -k - 1/2, \dots, \frac{-k - 3}{2}$$

(k poles in total). A scalar $\lambda_0 \in -2 - \mathbb{N}/2$ is a pole for $b_{\lambda,k}^{(m)}$ if

$$-\lambda_0 - 1 \leqslant k \leqslant -2\lambda_0 - 3.$$

In particular, let $\lambda_0 \in -2 - \mathbb{N}$. Denote by $\widehat{b}_{\lambda_0,k}^{(m)}$ the residue of $b_{\lambda,k}^{(m)}$ at $\lambda = \lambda_0$. Then (cf. § 3) (we omit the index 0) for $\lambda \in -2 - \mathbb{N}$ and $-\lambda - 1 \leqslant k \leqslant -2\lambda - 3$ we have

$$\widehat{b}_{\lambda,k}^{(m)}(f) = -\sum_{n=0}^{-2\lambda - 3 - k} \widehat{W}_{-\lambda - 2 - k,k-n}^{(m)}(s^{-m}c_n).$$

Let the pole μ belong th both sequences (4.1). This happens when $-2\lambda - 3 \in \mathbb{N}$. Then $\mu = -\lambda - 2 - k = k + 1 + l$, where $k, l \in \mathbb{N}$, so that $k + l = -2\lambda - 3$, $l - k = 2\mu + 1$. This pole is of the second order.

Let $\mu \in -2 - \mathbb{N}$. As in § 3 we write only down the first Laurent coefficient: if $-\lambda - 1 \le k$ (then k > l and $\mu \le -1$), then

$$\widehat{\widehat{F}}_{\lambda,-\lambda-2-k}^{(m)} = \frac{1}{2} (-1)^m a_{-m} (-\lambda - 2 - k) \widehat{b}_{\lambda,k}^{(m)},$$

and if $-\lambda - 1 \le l$ (then k < l and $\mu \ge 0$), then

$$\widehat{\widehat{F}}_{\lambda,\lambda+1+l}^{(m)} = -\frac{1}{2} \, (-1)^m \, A_{-\lambda-2-l} \, \widehat{b}_{\lambda,l}^{(m)}.$$

Let $\mu \in -5/2 - \mathbb{N}$. If $k \leq l$, then

$$\widehat{\widehat{F}}_{\lambda,\mu}^{(m)} = (-1)^m \widehat{a}_{-m}(\mu) b_{\lambda,k}^{(m)}$$

$$\widehat{F}_{\lambda,\mu}^{(m)} f = -\frac{1}{2} \sum_{n=0}^{l} \widetilde{C}_{\mu,n}^{(m)} (s^{-m} c_{l-n}),$$

and if $k \ge l$, then

$$\widehat{\widehat{F}}_{\lambda,\mu}^{(m)} = (-1)^m \widehat{A}_{-\lambda-2-l} b_{\lambda,l}^{(m)},$$

$$\widehat{F}_{\lambda,\mu}^{(m)} f = \frac{1}{2} \sum_{n=0}^k \widetilde{D}_{\mu,n}^{(m)} (s^{-m} c_{k-n}).$$

REFERENCES

- 1. Molchanov V.F., Grosheva L.I. Canonical and boundary representations on the Lobachevsky plane // Acta Applied Mathematics, 2002. V. 73. P. 59–77.
- 2. Grosheva L.I. Canonical representations on sections of linear bundles on the Lobachevsky plane // Tambov University Reports. Series: Natural and Technical Sciences. Tambov, 2007. V. 12. Iss. 4. P. 436–438.

Received 4 September 2017

Grosheva Larisa Igorevna, Tambov State University named after G. R. Derzhavin, Tambov, the Russian Federation, Candidate of Physics and Mathematics, Associate Professor of the Functional Analysis Department, e-mail: gligli@mail.ru

УДК 517.98

DOI: 10.20310/1810-0198-2017-22-6-1218-1228

КАНОНИЧЕСКИЕ ПРЕДСТАВЛЕНИЯ НА ПЛОСКОСТИ ЛОБАЧЕВСКОГО В СЕЧЕНИЯХ ЛИНЕЙНЫХ РАССЛОЕНИЙ

© Л.И. Грошева

Тамбовский государственный университет им. Г.Р. Державина 392000, Российская Федерация, г. Тамбов, ул. Интернациональная, 33 E-mail: gligli@mail.ru

Мы описываем канонические представления, связанные с сечениями линейных расслоений, соответствующие граничные представления и преобразования Пуассона и Фурье. Ключевые слова: плоскость Лобачевского; канонические представления; обобщенные функции; граничные представления; преобразования Пуассона и Фурье

СПИСОК ЛИТЕРАТУРЫ

- 1. $Molchanov\ V.F.$, $Grosheva\ L.I.$ Canonical and boundary representations on the Lobachevsky plane // Acta Applied Mathematics, 2002. V. 73. P. 59–77.
- 2. Грошева Л.И. Канонические представления в сечениях линейных расслоений на плоскости Лобачевского // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2007. Т. 12. Вып. 4. С. 436–438.

Поступила в редакцию 4 сентября 2017 г.

Грошева Лариса Игоревна, Тамбовский государственный университет им. Г.Р. Державина, г. Тамбов, Российская Федерация, кандидат физико-математических наук, доцент кафедры функционального анализа, e-mail: gligli@mail.ru

For citation: Grosheva L.I. Canonical and boundary representations on the Lobachevsky plane associated with linear bundles. Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki – Tambov University Reports. Series: Natural and Technical Sciences, 2017, vol. 22, no. 6, pp. 1218–1228. DOI: 10.20310/1810-0198-2017-22-6-1218-1228 (In Engl., Abstr. in Russian).

Для цитирования: Γ рошева Л.И. Канонические представления на плоскости Лобачевского в сечениях линейных расслоений // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2017. Т. 22. Вып. 6. С. 1218–1228. DOI: 10.20310/1810-0198-2017-22-6-1218-1228.