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Abstract. Let K be a number field and OK be its ring of integers. Let
∏

q(K) be the product
of all prime ideals of OK with absolute norm q. The Pólya group of a number field K is the
subgroup of the class group of K generated by the classes of

∏
q(K). K is a Pólya field if and

only if the ideals
∏

q(K) are principal. In this paper, we follow the work that we have done
in [S. EL Madrari, “On the Pólya fields of some real biquadratic fields”, Matematicki Vesnik,
online 05.09.2024] where we studied the Pólya groups and fields in a particulare cases. Here,
we will give the Pólya groups of K = Q(

√
d1,
√
d2) such that d1 = lm1 and d2 = lm2 are

square-free integers with l > 1 and gcd(m1,m2) = 1 and the prime 2 is not totally ramified
in K/Q. And then, we characterize the Pólya fields of the real biquadratic fields K.
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Группы и поля Пойи в некоторых действительных
биквадратичных числовых полях
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Аннотация. Пусть K — числовое поле, а OK — его кольцо целых чисел. Пусть
∏

q(K) —
произведение всех простых идеалов OK с абсолютной нормой q. Группа Пойи числового
поля K — это подгруппа группы классов K, порожденная классами

∏
q(K). K является

полем Пойи тогда и только тогда, когда идеалы
∏

q(K) являются главными. В этой статье
мы следуем нашей работе [S. EL Madrari, “On the Pólya fields of some real biquadratic fields”
Matematicki Vesnik, online 05.09.2024], в которой мы изучали группы и поля Пойи в частных
случаях. Здесь мы дадим группы Пойи K = Q(

√
d1,
√
d2) такие, что d1 = lm1 и d2 = lm2

являются свободными от квадратов целыми числами с l > 1 и НОД(m1,m2) = 1, а
простое число 2 не полностью разветвлено в K/Q. А затем мы охарактеризуем поля
Пойи действительных биквадратичных полей K.
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Introduction

Let K be a number field and OK be its ring of integers. Let Int(OK) = {R ∈ K[X] |
R(OK) ⊂ OK} be the ring of integer-valued polynomials on OK . According to Pólya in [1], a
basis (gn)n∈N of Int(OK) is said to be a regular basis if the deg (gn) = n for each polynomial
gn. In 1919, G. Pólya was interested whether the OK -module Int(OK) has a regular basis.
Ostrowski [2] showed that the OK -module Int(OK) admits a regular basis if and only if
the ideals

∏
q(K) are principal, where

∏
q(K) is the product of all prime ideals of OK with

absolute norm q. In 1982, Zantema in [3] gave the name of Pólya field to any field K such that
the OK -module Int(OK) has a regular basis. In 1997, Cahen and Chabert in [4] introduced
the notion of Pólya group which is the group generated by the classes of

∏
q(K).

Let K = Q(
√
d1,
√
d2) such that d1 = lm1 and d2 = lm2 are square-free integers with

l > 1 and gcd(m1,m2) = 1. The studies about the Pólya fields in the real biquadratic fields
started in 1982 by Zantema [3]. In 2011, A. Leriche in [5] gave some Pólya fields of K by
using the capitulation. Otheres (see [6], [7], and [8]) determined some particular cases of Pólya
groups and Pólya fields of K.

In this paper, we are going to determine H1(GK , EK) which is the first cohomology group
of units of K = Q(

√
d1,
√
d2) such that d1 = lm1 and d2 = lm2 are square-free integers with

l > 1 and gcd(m1,m2) = 1 and the prime 2 is not totally ramified in K/Q. And then, we
give the Pólya groups of K. Lastly, we give the Pólya fields of the real biquadratic fields K.
This paper continues the study of [9].

1. Notations

In this work, we adopt the following notations:
• l > 1 and m1 > 1 and m2 > 1 are square-free integers.
• d1 = lm1 and d2 = lm2 and d3 = m1m2 are square-free integers.
• K = Q(

√
d1,
√
d2) : a real biquadratic number field.

• OK : the ring of integers of K.
• ki = Q(

√
di) : the quadratic subfields of K for i = 1, 2, 3.

• εi = xi + yi
√
di : the fundamental unit of Q(

√
di), for i = 1, 2, 3.

• N(ηi) = Ni(ηi) = Normki/Q(ηi) where ηi ∈ ki, for i = 1, 2, 3.

• EK : the unit group of K over Q.
• GK : the Galois group of K over Q.
• ep : the ramification index of a prime number p in K/Q.
• dK : the discriminant of K over Q.
• t : the number of the prime divisors of dK .

2. Preliminaries

D e f i n i t i o n 2.1. Let
∏

q(L) be the product of all prime ideals of OL with norm
q ≥ 2. The Pólya group PO(L) of a number field L is the subgroup of the class group of L
generated by the classes of the ideals

∏
q(L).

In the real biquadratic number fields K, the prime 2 is the only prime can be totally
ramified in K/Q. When e2 the ramification index of the prime 2 in K/Q is 4 = [K : Q],

in other words 2 is totally ramified in K/Q so we have (d1, d2) ≡ (2, 3) or (3, 2) (mod 4),
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therefore Nε1 6= Nε2 = Nε3 = 1, Nε2 6= Nε1 = Nε3 = 1, or Nε1 = Nε2 = Nε3 = 1. When
e2 6= 4, i. e., the prime 2 is not totally ramified in K/Q. So, we have either e2 = 1, when
the prime 2 is not ramified in K/Q or e2 = 2, when the prime 2 is ramified in K/Q. Thus,
we have the following possibilities (d1, d2) ≡ (1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (3, 3) (mod 4). Let
kj = Q(

√
dj), j = 1, 2 note that when dj ≡ 1, 2 (mod 4), then Nεj = ±1, for j = 1, 2 and

when there exists a prime number ≡ 3 (mod 4) dividing dj then Nεj = +1, for j = 1, 2.

Let K = Q(
√
d1,
√
d2) such that d1 = lm1 and d2 = lm2 are two square-free integers with

l > 1 and gcd(m1,m2) = 1. Let H1(GK , EK) be the first cohomology group of units of K.
Let εi = xi + yi

√
di be the fundamental unit of Q(

√
di), for i = 1, 2, 3. Recall that ai ∈ Q

such that ai = N(εi + 1) = 2(xi + 1) when Nεi = 1 else ai = 1, for i = 1, 2, 3. Let H be
the subgroup of Q∗/Q∗2 generated by the images of d1, d2, d3, a1, a2 and a3 with d1 = lm1,

d2 = lm2, and d3 = m1m2. [ai] is the class of ai in Q∗/Q∗2, for i = 1, 2, 3 and [di] is the
class of di in Q∗/Q∗2, for i = 1, 2, 3.

Theorem 2.1 (see [10]). H ' H1(GK , EK), except for the next two cases in which H is
canonically isomorphic to a subgroup of index 2 of H1(GK , EK) :

1. the prime 2 is totally ramified in K/Q, and there exists integral zi ∈ ki, i = 1, 2, 3 such
that N1(z1) = N2(z2) = N3(z3) = ±2,

2. all the quadratic subfields ki contain units of norm −1 and EK = Ek1Ek2Ek3 .

R e m a r k 2.1. The theorem above was given by C. Bennett Setzer in [10]. It presents
the first cohomology group of units of the real biquadratic number fields K. For the proof of
the theorem above, the reader refers to see the proof in [10, Theorems 4,5,7]. Note that the
theorem above is mentioned by Zantema in [3, Section 4, p. 14,15], also it is mentioned in [6].

Now we give a well-known proposition in the notion of Pólya group and field (see [5,
Proposition 2.3]).

P r o p o s i t i o n 2.1. The group PO(L) is trivial if and only if one of the following
assertions is satisfied:

1. the field L is a Pólya field,
2. all the ideals

∏
q(L) are principal,

3. the OL -module Int(OL) has a regular basis.

Zantema gave the following proposition which connects the first cohomology group of units
of a number field L with the Pólya group of L in a Galois extension.

P r o p o s i t i o n 2.2 (see [3]). Let L/Q be a Galois extension and dL be its discriminant.
Denote by ep the ramification index of a prime number p in L. Then, the following sequence
is exact

1→ H1(GL, EL)→ ⊕p|dLZ/epZ→ PO(L)→ 1.

In particular, |H1(GL, EL)||PO(L)| =
∏

p|dL ep.

Hence, we get the following result.

Corollary 2.1. L is a Pólya field if and only if |H1(GL, EL)| =
∏
p|dL

ep.



132 S. El Madrari

P r o p o s i t i o n 2.3 (see [11]). Let K = Q(
√
d1,
√
d2). Let εi be the fundamental unit

of Q(
√
di), i = 1, 2, 3. Let EK be the unit group of K over Q. So, we have the following

possibilities for a system of fundamental of units of EK :
1. εi, εj, εk,

2.
√
εi, εj, εk with Nεi = 1,

3.
√
εi,
√
εj, εk such that Nεi = Nεj = 1,

4. √εiεj, εj, εk such that Nεi = Nεj = 1,

5. √εiεj,
√
εk, εj where Nεi = Nεj = Nεk = 1,

6. √εiεj,
√
εjεk,

√
εkεi where Nεi = Nεj = Nεk = 1,

7. √εiεjεk, εj, εk where Nεi = Nεj = Nεk = 1,

8. √εiεjεk, εj, εk with Nεi = Nεj = Nεk = −1, where {εi, εj, εk} = {ε3, ε1, ε2}.

P r o p o s i t i o n 2.4 (see [11]). Let k = Q(
√
d) such that Nε = 1 and let λ denote the

square-free part of the positive integer N(ε + 1). Then λ > 1, λ divides the discriminant of
k, λ 6= d, and

√
λε ∈ k.

3. The Pólya Groups of The Real Biquadratic Fields K = Q(
√
lm1,

√
lm2)

In this section, we are going to determine the Pólya groups of the fields K. Firstly, we need
to give the first cohomology group of units of K.

3.1. The structure of the first cohomology group of units of K = Q(
√
lm1,

√
lm2)

P r o p o s i t i o n 3.1. Let K = Q(
√
d1,
√
d2) such that d1 = lm1 and d2 = lm2 are

square-free integers with l > 1 and gcd(m1,m2) = 1. Let ε1, ε2 and ε3 be the fundamental
unit of Q(

√
d1), Q(

√
d2) and Q(

√
d3) with d3 = m1m2 respectively, and let Nε1 = Nε2 =

Nε3 = 1. Let λ1, λ2 and λ3 be the square-free part of N(ε1 + 1), N(ε2 + 1) and N(ε3 + 1)

respectively. Then, we have the following results:
1.
√
ε1ε2 ∈ K if and only if either [λ1λ2] = [lm1], [lm2] or [m1m2], or λ1 = λ2 = l,

2. √εjε3 ∈ K for j = 1 or 2 if and only if either [λjλ3] = [lm1], [lm2] or [m1m2], or
λj = λ3 = mj,

3.
√
ε1ε2ε3 ∈ K if and only if either [λ1λ2λ3] = [lm1], [lm2] or [m1m2], or [λ1λ2] = [λ3].

P r o o f. Let ki = Q(
√
di) such that Nεi = 1 for i = 1, 2, 3 and let λi be the square-free

part of the positive integer N(εi + 1) for i = 1, 2, 3. Recall that [lm1], [lm2] and [m1m2] is
the class of lm1, lm2 and m1m2 in Q∗/Q∗2 respectively. We start by the first equivalent.

1. ( =⇒ ), we use the contrapositive. We suppose that ([λ1λ2] 6= [lm1], [lm2] and [m1m2]),

and (λ1 6= l or λ2 6= l). We know that
√
λ1ε1 ∈ k1 and

√
λ2ε2 ∈ k2 (see Proposition 2.4),

so
√
λ1λ2ε1ε2 ∈ K and since ([λ1λ2] 6= [lm1], [lm2] and [m1m2]), and (λ1 6= l or λ2 6= l), so√

ε1ε2 /∈ K. Reciprocally, we suppose either [λ1λ2] = [lm1], [lm2] or [m1m2], or λ1 = λ2 = l,

and since we have
√
λ1ε1 ∈ k1 and

√
λ2ε2 ∈ k2. So,

√
λ1ε1
√
λ2ε2 ∈ K and thus we get that√

ε1ε2 ∈ K.
2. As above the first assertion we get the second.
3. Lastely, ( =⇒ ) assuming that [λ1λ2λ3] 6= [lm1], [lm2] and [m1m2], and [λ1λ2] 6=

[λ3]. Since
√
λ1ε1 ∈ k1,

√
λ2ε2 ∈ k2, and

√
λ3ε3 ∈ k3, so

√
λ1ε1λ2ε2λ3ε3 ∈ K. As we have

[λ1λ2λ3] 6= [lm1], [lm2] and [m1m2], and [λ1λ2] 6= [λ3], so
√
ε1ε2ε3 /∈ K. Now we suppose

either [λ1λ2λ3] = [lm1], [lm2] or [m1m2], or [λ1λ2] = [λ3]. As
√
λ1ε1 ∈ k1 and

√
λ2ε2 ∈ k2

and then
√
λ3ε3 ∈ k3, thus we get that

√
ε1ε2ε3 ∈ K.
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E x a m p l e 3.1. In the field K = Q(
√
7 · 5,

√
7 · 11), we have d1 = 7 · 5 = 35, d2 =

7 · 11 = 77 and d3 = 5 · 11 = 55. The fundamental units are ε1 = 6 +
√
35, ε2 =

1
2
(9 +

√
77),

ε3 = 89 + 12
√
55 such that Nε1 = Nε2 = Nε3 = 1. So, a1 = 2(x1 + 1) = 2(6 + 1) = 2 · 7,

a2 = 2(x2+1) = 2(9
2
+1) = 11, a3 = 2(89+1) = 2 ·90 = 22 ·32 ·5. And thus we have λ1 = 2 ·7,

λ2 = 11, and then λ3 = 5. By Proposition 2.4, we get that
√
2 · 7ε1 ∈ k1 = Q(

√
7 · 5),√

11ε2 ∈ k2 = Q(
√
7 · 11) and

√
5ε3 ∈ k3 = Q(

√
5 · 11). So,

√
11ε2
√
5ε3 =

√
11 · 5√ε2ε3 ∈ K,

as we have λ2λ3 = 11 · 5 = d3, then
√
ε2ε3 ∈ K.

R e m a r k 3.1. Let k3 = Q(
√
m1m2) and ε3 be the fundamental unit of k3 with

Nε3 = 1. Let λ3 be the square-free part of the positive integer N(ε3 + 1). Since λ3 > 1,

λ3 divides the discriminant of k3, λ3 6= m1m2, and
√
λ3ε3 ∈ k3 = Q(

√
m1m2), so

√
ε3 /∈ K.

Similarly, we find that
√
ε1 /∈ K and

√
ε2 /∈ K.

Let K = Q(
√
d1,
√
d2). We know that when we have either Nε1 6= Nε2 = Nε3 = 1,

Nε2 6= Nε1 = Nε3 = 1, or Nε1 = Nε2 = Nε3 = 1 so we can have e2 = 4 or e2 6= 4.

In the lemma below, we give H1(GK , EK) the first cohomology group of units of K such
that e2 6= 4, i. e., the prime 2 is not totally ramified in K/Q. We mention here that when
Nε1 = Nε2 = Nε3 = −1, Nε1 = Nε2 = −1 6= Nε3 = 1, Nεi 6= Nεj = Nε3 = −1, with
j 6= i = 1, 2, and Nε1 = Nε2 6= Nε3 = −1, we always have e2 6= 4.

Lemma 3.1. Let K = Q(
√
d1,
√
d2) such that d1 = lm1 and d2 = lm2 are square-free

integers with l > 1 and gcd(m1,m2) = 1. Then
1. H1(GK , EK) ' (Z/2Z)2, when Nε1 = Nε2 = Nε3 = −1 and

√
ε1ε2ε3 ∈ K.

2. H1(GK , EK) ' (Z/2Z)3, when
(a) Nε1 = Nε2 = Nε3 = −1 and

√
ε1ε2ε3 /∈ K,

(b) Nε1 = Nε2 = −1, Nε3 = 1,

(c) Nεj 6= Nεk = Nε3 = −1, for j 6= k ∈ {1, 2},
(d) Nε1 = Nε2 = 1, Nε3 = −1 and

√
ε1ε2 ∈ K, or

(e) Nεk 6= Nεj = Nε3 = 1 and √εjε3 ∈ K, j 6= k ∈ {1, 2} such that e2 6= 4 ,
(f) Nε1 = Nε2 = Nε3 = 1 and

√
ε1ε2 ∈ K and

√
ε1ε3 ∈ K and

√
ε2ε3 ∈ K such that

e2 6= 4.

3. H1(GK , EK) ' (Z/2Z)4, when
(a) Nε1 = Nε2 = 1, Nε3 = −1 and

√
ε1ε2 /∈ K,

(b) Nεk 6= Nεj = Nε3 = 1 and √εjε3 /∈ K, j 6= k ∈ {1, 2} such that e2 6= 4 or
(c) Nε1 = Nε2 = Nε3 = 1 and

√
ε1ε2 ∈ K,

√
ε2ε3 ∈ K,

√
ε1ε3 ∈ K, or

√
ε1ε2ε3 ∈ K

such that e2 6= 4.

4. H1(GK , EK) ' (Z/2Z)5, when Nε1 = Nε2 = Nε3 = 1 and
√
ε1ε2 /∈ K,

√
ε2ε3 /∈ K,√

ε1ε3 /∈ K, and
√
ε1ε2ε3 /∈ K such that e2 6= 4.

P r o o f. Recall that λ1, λ2 and λ3 be the square-free part of N(ε1+1)=a1, N(ε2 + 1)=a2
and N(ε3 + 1) = a3 respectively, such that Nε1 = Nε2 = Nε3 = 1. Let [a1], [a2], and
[a3] be the class of a1, a2 and a3 in Q∗/Q∗2 respectively, so [a1] = [λ1], [a2] = [λ2], and
[a3] = [λ3] where Nε1 = Nε2 = Nε3 = 1. We know that H is the subgroup of Q∗/Q∗2
generated by the images of d1, d2, d3, a1, a2 and a3 with d1 = lm1, d2 = lm2 and d3 = m1m2.

In the following we study in Q∗/Q∗2 whether [lm1], [lm2], [m1m2], [a1], [a2], and [a3] are
linearly independents. Note that [m1m2] belongs to the subgroup generated by [lm1] and
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[lm2] in Q∗/Q∗2, in other words [m1m2] ∈ 〈[lm1], [lm2]〉. We refer the reader to see the proof
of the theorems A,B,C, and D in [6] since in the following we do the same process to give
H1(GK , EK).

When Nε1 = Nε2 = Nε3 = −1, we get that [a1] = [a2] = [a3] = 1. And thus, [lm1]

and [lm2] are linearly independents, i. e., 〈[lm1], [lm2]〉 ' (Z/2Z)2. As the three fundamental
units with negative norm. Then, by Kubota [11], we have either EK = 〈−1, ε1, ε2, ε3〉 or EK =

〈−1, ε1, ε2,
√
ε1ε2ε3〉 is the group of units of K. Thus, we will distinguish the two following

cases.
• When

√
ε1ε2ε3 ∈ K, which means that we have EK = 〈−1, ε1, ε2,

√
ε1ε2ε3〉. So, by

Theorem 2.1, we get that H1(GK , EK) ' H ' (Z/2Z)2.
• Otherwise, i. e.,

√
ε1ε2ε3 /∈ K, then EK = 〈−1, ε1, ε2, ε3〉. On the other hand, we know

that Ek1 = 〈−1, ε1〉, Ek2 = 〈−1, ε2〉 and then Ek3 = 〈−1, ε3〉. Therefore, EK = Ek1Ek2Ek2 .

So, using the Theorem 2.1, we get that H1(GK , EK) ' H × Z/2Z ' (Z/2Z)3.
When Nε1 = Nε2 = −1 and Nε3 = 1, then [a1] = [a2] = 1. Now we have to check whether

[a3] belongs to the group generated by [lm1] and [lm2]. By Proposition 2.4 we have λ3 > 1 and
λ3 6= m1m2 = d3 and then λ3 divides dk3 . Therefore, we get that [a3] = [λ3] /∈ 〈[lm1], [lm2]〉
and thus H1(GK , EK) ' H ' (Z/2Z)3.

Assuming Nεj 6= Nεk = Nε3 = −1 such that j 6= k = 1, 2. Then, [ak] = [a3] = 1. As
above, the second assertion, we get that H1(GK , EK) ' H ' (Z/2Z)3.

When Nε1 = Nε2 = 1 and Nε3 = −1, so [a3] = 1. Thence, we have to verify whether
[lm1], [lm2], [a1], and [a2] are linearly independents or not. As Nε1 = Nε2 = 1. Then, we have
to distinguish the following cases.
• When

√
ε1ε2 ∈ K (note that we have EK = 〈−1,√ε1ε2, ε2, ε3〉 see Proposition 2.3). So,

according to Proposition 3.1, we have either ([a1] = [a2] = [l]) or ([a1a2] = [lm1], [lm2] or
[m1m2]). Note that, we have λj > 1, λj 6= lmj, and λj divides dkj for j = 1, 2. So, we
get both [a1] = [λ1] and [a2] = [λ2] are not in 〈[lm1], [lm2]〉. Thus, we obtain that [aj] ∈
〈[lm1], [lm2], [ak]〉 with j 6= k = 1, 2. Then, by the Theorem 2.1, we get that H1(GK , EK) '
H ' (Z/2Z)3.
• Otherwise, i. e.,

√
ε1ε2 /∈ K (note that here we have EK = 〈−1, ε1, ε2, ε3〉 ), so we

have ([a1] 6= [l] or [a2] 6= [l]) and ([a1a2] 6= [lm1], [lm2] and [m1m2]). Hence, [aj] /∈
〈[lm1], [lm2], [ak]〉 for j 6= k = 1, 2. So, H1(GK , EK) ' H ' (Z/2Z)4.

Let Nεk 6= Nεj = Nε3 = 1, for j 6= k = 1, 2 such that e2 6= 4. Then, [ak] = 1 and thus
we have to see whether [lm1], [lm2], [aj], and [a3] with j = 1, 2 are linearly independents.
As above, the fourth case, we get that H1(GK , EK) ' H ' (Z/2Z)3 when √εjε3 ∈ K with
j = 1, 2. Otherwise, we get that H1(GK , EK) ' H ' (Z/2Z)4.

Suppose Nε1 = Nε2 = Nε3 = 1 such that e2 6= 4. Then, we have to check if [lm1], [lm2], [a1],

[a2] and [a3] are linearly independents. Therefore, we have to distinguish the following cases.
• When

√
ε1ε2 ∈ K. As above, (the fourth case) , we get that [ak] ∈ 〈[lm1], [lm2], [aj]〉

with j 6= k = 1, 2. We know that [a3] = [λ3] /∈ 〈[lm1], [lm2]〉. As we are in the case of√
ε1ε2 ∈ K, (i. e., EK = 〈−1,√ε1ε2, ε2, ε3〉 ) so

√
εjε3 /∈ K with j = 1, 2. Hence, we get that

([aj][a3] = [λj][λ3] 6= [lmj] and [m1m2]), and ([aj] 6= [mj] or [a3] 6= [mj]) for j = 1, 2. As a
result, we have [a3] /∈ 〈[lm1], [lm2], [aj]〉 and thus H1(GK , EK) ' H ' (Z/2Z)4.
• When √εjε3 ∈ K for j ∈ {1, 2}, as above, we get that H1(GK , EK) ' H ' (Z/2Z)4.
• When

√
ε1ε2ε3 ∈ K, (note that we have EK = 〈−1, ε1, ε2,

√
ε1ε2ε3〉 see Proposition

2.3). So, we have either ([a1][a2][a3] = [λ1][λ2][λ3] = [lm1], [lm2] or [m1m2]), or ([a1][a2] =
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[λ1][λ2] = [a3] = [λ3]). We know that, [a1], [a2] [a3] /∈ 〈[lm1], [lm2]〉. Note that
√
ε1ε3 /∈ K and√

ε2ε3 /∈ K (since EK = 〈−1, ε1, ε2,
√
ε1ε2ε3〉 ), so [a3] /∈ 〈[lm1], [lm2], [ak]〉 with k = 1, 2, but

[a3] ∈ 〈[lm1], [lm2], [a1], [a2]〉. So, H1(GK , EK) ' H ' (Z/2Z)4.
• Otherwise, i. e.,

√
ε1ε2ε3 /∈ K,

√
ε1ε2 /∈ K,

√
ε1ε3 /∈ K, and

√
ε2ε3 /∈ K in other words

EK = 〈−1, ε1, ε2, ε3〉. As a result, we get that [lm1], [lm2], [a1], [a2] and [a3] are linearly
independents. So, H1(GK , EK) ' H ' (Z/2Z)5.

When Nε1 = Nε2 = Nε3 = 1 and
√
ε1ε2 ∈ K and

√
ε1ε3 ∈ K and

√
ε2ε3 ∈ K such that

e2 6= 4 (here we have EK = 〈−1,√ε1ε2,
√
ε2ε3,

√
ε1ε3〉 see Proposition 2.3). Now we verify if

[lm1], [lm2], [a1], [a2] and [a3] are linearly independents. We know that when
√
ε1ε2 ∈ K, then

[ak] ∈ 〈[lm1], [lm2], [aj]〉 with j 6= k = 1, 2 and when √εjε3 ∈ K so [a3] ∈ 〈[lm1], [lm2], [aj]〉,
j = 1, 2. Thus, H1(GK , EK) ' H ' (Z/2Z)3.

In the following we give some examples of H1(GK , EK) such that e2 6= 4.

E x a m p l e 3.2. In this example we use the same field K = Q(
√
7 · 5,

√
7 · 11) of

the Example 3.1 (we recall that e2 6= 4 ). Since we have Nε1 = Nε2 = Nε3 = 1, then
H1(GK , EK) ' H ' (Z/2Z)4 or (Z/2Z)5 (see the lemma above). As we have λ1 = 2 · 7,
λ2 = 11, and then λ3 = 5, and

√
ε2ε3 ∈ K (see the Example 3.1), then by the lemma above

we get that H1(GK , EK) ' H ' (Z/2Z)4.

E x a m p l e 3.3. Let K = Q(
√
3 · 5 · 7,

√
3 · 5 · 11), where d1 = 3 · 5 · 7 = 105, d2 =

3 · 5 · 11 = 165, d3 = 7 · 11 = 77. Thus, we have ε1 = 41 + 4
√
105, ε2 = 1

2
(13 +

√
165)

and then ε3 = 1
2
(9 +

√
77) such that Nε1 = Nε2 = Nε3 = 1 and e2 6= 4. Hence, we have

a1 = 2(x1 + 1) = 2(41 + 1) = 22 · 3 · 7, a2 = 2(x2 + 1) = 2(13
2
+ 1) = 3 · 5, a3 = 2(x3 + 1) =

2(9
2
+ 1) = 11. We have λ1 = 3 · 7, λ2 = 3 · 5, and λ3 = 11, thus we get that

√
ε2ε3 ∈ K

(λ2λ3 = 3 · 5 · 11 = d2 ). Then H1(GK , EK) = 〈[3 · 5 · 7], [3 · 5 · 11], [3 · 7], [3 · 5]〉 ' (Z/2Z)4.

3.2. The Pólya groups of the real biquadratic fields K = Q(
√
lm1,

√
lm2)

Theorem 3.1. Let K = Q(
√
d1,
√
d2) such that d1 = lm1 and d2 = lm2 are square-free

integers with l > 1 and gcd(m1,m2) = 1. Let t be the number of the prime divisors of dK .
So,

1. PO(K) ' (Z/2Z)t−2, when Nε1 = Nε2 = Nε3 = −1 and
√
ε1ε2ε3 ∈ K.

2. PO(K) ' (Z/2Z)t−3, when
(a) Nε1 = Nε2 = Nε3 = −1 and

√
ε1ε2ε3 /∈ K,

(b) Nε1 = Nε2 = −1, Nε3 = 1,
(c) Nεj 6= Nεk = Nε3 = −1, for j 6= k ∈ {1, 2},
(d) Nε1 = Nε2 = 1, Nε3 = −1 and

√
ε1ε2 ∈ K, or

(e) Nεk 6= Nεj = Nε3 = 1 and √εjε3 ∈ K, j 6= k ∈ {1, 2} such that e2 6= 4,
(f) Nε1 = Nε2 = Nε3 = 1 and

√
ε1ε2 ∈ K,

√
ε1ε3 ∈ K,

√
ε2ε3 ∈ K such that e2 6= 4.

3. PO(K) ' Et−4, when
(a) Nε1 = Nε2 = 1, Nε3 = −1 and

√
ε1ε2 /∈ K,

(b) Nεk 6= Nεj = Nε3 = 1 and √εjε3 /∈ K, j 6= k ∈ {1, 2} such that e2 6= 4, or
(c) Nε1 = Nε2 = Nε3 = 1 and

√
ε1ε2 ∈ K,

√
ε2ε3 ∈ K,

√
ε1ε3 ∈ K

√
ε1ε2ε3 ∈ K

such that e2 6= 4.

4. PO(K) ' (Z/2Z)t−5, when Nε1 = Nε2 = Nε3 = 1 and
√
ε1ε2 /∈ K,

√
ε2ε3 /∈ K,√

ε1ε3 /∈ K and
√
ε1ε2ε3 /∈ K such that e2 6= 4.
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P r o o f. We have K = Q(
√
d1,
√
d2) such that d1 = lm1 and d2 = lm2 are square-free

integers with l > 1 and gcd(m1,m2) = 1. K is a Galois extension of Q with [K : Q] = 4 and
dK is the discriminant K. We recall that ep is the ramification index of a prime number p in
K/Q and thus e2 = 1 when the prime 2 is not ramified in K/Q and e2 = 2 when the prime 2

is ramified in K/Q. According to Proposition 2.2, we have |H1(GK , EK)||PO(K)| =
∏

p|dK ep.

Thus, |PO(K)| = 2t

|H1(GK ,EK)| , where t is the number of prime numbers dividing dK . Thence,
we have PO(K) ' (Z/2Z)t−s where s is satisfying (Z/2Z)s ' H1(GK , EK). By the Lemma
3.1, we have when Nε1 = Nε2 = Nε3 = −1 and

√
ε1ε2ε3 ∈ K, then H1(GK , EK) ' (Z/2Z)2.

Therefore, we get that PO(K) ' (Z/2Z)t−2.
Similarly, as above, we deduce the other results of the theorem.

4. The Pólya Fields of The Real Biquadratic Fields K = Q(
√
lm1,

√
lm2)

In this section, we aim to determine the Pólya fields of the real biquadratic fields of K =

Q(
√
d1,
√
d2) such that d1 = lm1 and d2 = lm2 are square-free integers with l > 1 and

gcd(m1,m2) = 1. Let p, p1, p2, p3, p4 and then p′ be the prime integers congruent to 1 (mod 4)

and let q, q1, q2, q3, q4 and then q′ be the prime integers congruent to 3 (mod 4).

Since we are going to characterize the Pólya fields of K = Q(
√
d1,
√
d2) such that d1 = lm1

and d2 = lm2. So, we need the discriminant of K over Q which determined in [12] and [13]
by: dK = (lm1m2)

2, when (d1, d2) ≡ (1, 1) (mod 4). And when (di, dj) ≡ (1, 2), (1, 3) or
(3, 3) (mod 4) with i 6= j ∈ {1, 2}, dK = (4lm1m2)

2. In the following theorem we give the
Pólya fields of K in the cases of Nε1 = Nε2 = Nε3 = −1, Nε1 = Nε2 = −1 6= Nε3 = 1, and
Nεi 6= Nεj = Nε3 = −1, with j 6= i = 1, 2. Note that in those cases we have e2 6= 4 and the
primes dividing d1 = lm1 and d2 = lm2 are not congruent to 3 (mod 4). So, in the theorem
below l must be congruent to 1 (mod 4).

Theorem 4.1. Let K = Q(
√
d1,
√
d2) such that d1 = lm1 and d2 = lm2 are square-free

integers with l > 1 and gcd(m1,m2) = 1 and put j 6= k ∈ {1, 2}.
We assume Nε1 = Nε2 = Nε3 = −1. Then, K is a Pólya field if and only if one of the

following assertions is satisfied:
1. di = lp1 and dj = lp2, with l = p,

2. di = lp1 and dj = 2l, with l = p.

Now we assume that Nε1 = Nε2 = −1, Nε3 = 1. So, K is a Pólya field if and only if one
of the following assertions is satisfied:

1. di = lp1 and dj = lp2 where l = p,

2. di = lp1 and dj = 2l where l = p.

We suppose that Nεi 6= Nεj = Nε3 = −1. So, K is a Pólya field if and only if one of the
following assertions is satisfied:

1. di = lp1 and dj = lp2,

2. di = lp1 and dj = 2l,

3. dj = lp1 and di = 2l,

where in the three items above we have l = p.

P r o o f. We know that, K is a Pólya field if and only if Po(K) is trivial. By the Theorem
3.1, we have the following cases.

(i) When Nε1 = Nε2 = Nε3 = −1 and
√
ε1ε2ε3 ∈ K, then PO(K) ' (Z/2Z)t−2 where t

is the number of prime divisors of dK , and thus K is a Pólya field if and only if t = 2. Note
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that this case can not occur because t must be ≥ 3. On the other hand, when
√
ε1ε2ε3 /∈ K,

so PO(K) ' (Z/2Z)t−3. So, K is a Pólya field if and only if t = 3. Hence
• We suppose (di, dj) ≡ (mi,mj) ≡ (1, 1) (mod 4), then by Williams [12] we have dK =

(lm1m2)
2. Thence, K is a Pólya field if and only if di = lp1 and dj = lp2 with l = p ≡ 1

(mod 4).

• Now we suppose (di, dj) ≡ (mi,mj) ≡ (1, 2) (mod 4), then dK = (4lm1m2)
2. So, K is

a Pólya field if and only if di = lp1, dj = 2l with l = p.

(ii) When Nε1 = Nε2 = −1 and Nε3 = 1, then PO(K) ' (Z/2Z)t−3. Thus, K is a Pólya
field if and only if t = 3. When (di, dj) ≡ (mi,mj) ≡ (1, 1) (mod 4), we get the item 1, and
when (di, dj) ≡ (mi,mj) ≡ (1, 2) (mod 4), we have the item 2.

(iii) When Nεi 6= Nεj = Nε3 = −1 with i 6= j ∈ {1, 2}, then PO(K) ' (Z/2Z)t−3.
Hence, K is a Pólya field if and only if t = 3. When (di, dj) ≡ (mi,mj) ≡ (1, 1) (mod 4), we
get the item 1 and when (di, dj) ≡ (mi,mj) ≡ (1, 2) (mod 4), we obtain 2. And then when
(dj, di) ≡ (mj,mi) ≡ (1, 2) (mod 4), we have 3.

In the following theorem, we give the Pólya fields of K in the case of Nε1 = Nε2 6= Nε3 =

−1. We mention here that e2 6= 4.

Theorem 4.2. Let K = Q(
√
d1,
√
d2) such that d1 = lm1 and d2 = lm2 are square-free

integers with l > 1 and gcd(m1,m2) = 1 and put j 6= k ∈ {1, 2}. Let Nε1 = Nε2 6= Nε3 = −1.
We suppose

√
ε1ε2 ∈ K. Then, K is a Pólya field if and only if one of the following

assertions is satisfied:
1. di = lp1, dj = lp2, where l = p,

2. di = lp1, dj = 2l, where l = p.
Otherwise, i. e.,

√
ε1ε2 /∈ K. Then, K is a Pólya field if and only if one of the following

assertions is satisfied:
1. di = lp1p2, dj = lp3, where l = p,

2. di = lp1p2, dj = 2l, where l = p,

3. di = lp1, dj = 2lp2, where l = p,

4. di = lp1, dj = lp2, where l = pp′,

5. di = lp1 dj = 2l where l = pp′.

P r o o f. By the Theorem 3.1, we have the following cases.
(i) When Nε1 = Nε2 6= Nε3 = −1 and

√
ε1ε2 ∈ K, then PO(K) ' (Z/2Z)t−3 where t is

the number of prime divisors of dK . So, K is a Pólya field if and only if we have either the
item 1, or 2.

(ii) When Nε1 = Nε2 6= Nε3 = −1 and
√
ε1ε2 /∈ K. Then, PO(K) ' Et−4. So, K is a

Pólya field if and only if t = 4.

• When (di, dj) ≡ (1, 1) (mod 4). So, K is a Pólya field if and only if di = lp1p2 dj = lp3
such that l = p. When l = pp′, we get the item 4.
• Now when (di, dj) ≡ (1, 2) (mod 4), we get the other items of the theorem.

Let K = Q(
√
d1,
√
d2) , d1 = lm1 and d2 = lm2 such that Nεi 6= Nεj = Nε3 = 1, for

i 6= j ∈ {1, 2}. Note that in this case we can have either e2 = 4 (since we can have (d1, d2) ≡
(2, 3), (3, 2) (mod 4) ) or e2 6= 4 (since we can have (d1, d2) ≡ (1, 1), (1, 2), (2, 1), (1, 3), (3, 1)

(mod 4) ) note that (d1, d2) 6≡ (3, 3) (mod 4) since Nεi 6= Nεj, with i 6= j ∈ {1, 2}. In the
following theorem we give the Pólya fields of K where e2 6= 4. As we have Nεi 6= Nεj= Nε3= 1,

for i 6= j ∈ {1, 2} and l dividing d1 and d2, then the divisors of l are ≡ 1 (mod 4).
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Theorem 4.3. Let K = Q(
√
d1,
√
d2) such that d1 = lm1 and d2 = lm2 are square-free

integers with l > 1 and gcd(m1,m2) = 1. Let Nεi 6= Nεj = Nε3 = 1, for i 6= j ∈ {1, 2} such
that e2 6= 4.

Assuming √εjε3 ∈ K, j = 1, 2. So, K is a Pólya field if and only if one of the following
assertions is satisfied:

1. di = lp1, dj = lp2,

2. di = lp1, dj = 2l,

3. dj = lp1, di = 2l,

where in the three items above we have l = p.

Otherwise. Then, K is a Pólya field if and only if one of the following assertions is satisfied:
1. di = lp1p2 and dj = lp3,

2. di = lp1 and dj = lp2p3 or lq1q2,

3. di = lp1p2 and dj = 2l,

4. di = lp1 and dj = 2lp2 or 2lq,

5. dj = lp1p2 or lq1q2 and di = 2l,

6. dj = lp1 and di = 2lp2,

7. di = lp1 and dj = lq1,

where in the items above we have l = p,

8. di = lp1 and dj = lp2,

9. di = lp1 and dj = 2l,

10. dj = lp1 and di = 2l,

such that l = pp′.

P r o o f. We know that, when Nεi 6= Nεj = Nε3 = 1 such that e2 6= 4, for i 6= j ∈
{1, 2}, then we have (di, dj) ≡ (1, 1), (1, 2), (2, 1), (1, 3) (mod 4). By Theorem 3.1, we have the
following cases.

(i) When Nεi 6= Nεj = Nε3 = 1, and √εjε3 ∈ K such that e2 6= 4 with i 6= j ∈ {1, 2}.
Then, PO(K) ' (Z/2Z)t−3. So, K is a Pólya field if and only if t = 3. Therefore, when
(di, dj) ≡ (1, 1) (mod 4) we get the item 1 and when (di, dj) ≡ (1, 2) (mod 4) we have the
item 2, lastly when (dj, di) ≡ (1, 2) (mod 4) we obtain the item 3.

(ii) When Nεi 6= Nεj = Nε3 = 1 and √εjε3 /∈ K such that e2 6= 4 with i 6= j ∈ {1, 2}.
Then, PO(K) ' (Z/2Z)t−4. Thence, K is a Pólya field if and only if t = 4.

• When (di, dj) ≡ (1, 1) (mod 4), then dK = (lm1m2)
2. When l = p, so K is a Pólya

field if and only if either di= lp1p2, dj= lp3 or the item 2. When l= pp′, we have the item 8.
• We suppose that (di, dj) ≡ (1, 2) (mod 4). If l = p thus K is a Pólya field if and only

if we have either the item 3, or 4. When l = pp′, we get the item 9.
• When (dj, di) ≡ (1, 2) (mod 4). When l = p, we have either the item 5, or 6. And when

l = pp′, we obtain the item 10.
• Lastly, when (di, dj) ≡ (1, 3) (mod 4), we get the item 7.

Consider K = Q(
√
d1,
√
d2), d1 = lm1 and d2 = lm2 such that Nε1 = Nε2 = Nε3 = 1.

Under the condition of the norm, we can have either e2 6= 4 or e2 = 4. In the following
theorem we give the Pólya fields of K where Nε1 = Nε2 = Nε3 = 1 and

√
ε1ε2 ∈ K and√

ε2ε3 ∈ K and
√
ε1ε3 ∈ K (i. e., EK = 〈−1,√ε1ε2,

√
ε2ε3,

√
ε1ε3〉 ) such that e2 6= 4. As we

have Nε1 = Nε2 = Nε3 = 1, so l can be ≡ 1 (mod 4) or ≡ 3 (mod 4).
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Theorem 4.4. Let K = Q(
√
d1,
√
d2) such that d1 = lm1 and d2 = lm2 are square-free

integers with l > 1 and gcd(m1,m2) = 1. Let Nε1 = Nε2 = Nε3 = 1 and
√
ε1ε2 ∈ K and√

ε2ε3 ∈ K and
√
ε1ε3 ∈ K such that e2 6= 4. Then, K is a Pólya field if and only if one of

the following assertions is satisfied:
1. di = lp1, dj = lp2, where l = p,

2. di = lq1, dj = lq2, where l = q,

3. di = lp1, dj = 2l, where l = p,

4. dj = lq1, di = 2l, with l = q.

P r o o f. As we have Nε1 = Nε2 = Nε3 = 1 and
√
ε1ε2 ∈ K and

√
ε2ε3 ∈ K and√

ε1ε3 ∈ K such that e2 6= 4, so by Theorem 3.1 we have PO(K) ' (Z/2Z)t−3. Hence, K is
a Pólya field if and only if t = 3. Therefore, when (di, dj) ≡ (1, 1) (mod 4), we know that
dK = (lm1m2)

2 and thus we get the items 1, 2. And when (di, dj) ≡ (1, 2) (mod 4), we have
dK = (4lm1m2)

2 and thus we get the items 3, 4. When (di, dj) ≡ (1, 3) or (3, 3) (mod 4),

i 6= j = 1, 2 so dK = (4lm1m2)
2 and since t = 3 we find that these cases can not occur.

Let K = Q(
√
d1,
√
d2), d1 = lm1 and d2 = lm2. In the two following theorems, we give

the Pólya fields of K such that Nε1 = Nε2 = Nε3 = 1 and e2 6= 4. We recall that since
Nε1 = Nε2 = Nε3 = 1, so l can be ≡ 1 (mod 4) or ≡ 3 (mod 4).

Theorem 4.5. Let K = Q(
√
d1,
√
d2) such that d1 = lm1 and d2 = lm2 are square-free

integers with l > 1 and gcd(m1,m2) = 1 and put j 6= k ∈ {1, 2}. Let Nε1 = Nε2 = Nε3 = 1

and
√
ε1ε2 ∈ K,

√
ε2ε3 ∈ K,

√
ε1ε3 ∈ K or

√
ε1ε2ε3 ∈ K such that e2 6= 4. Then, K is a

Pólya field if and only if one of the following assertions is satisfied:
1. di = lp1p2 or lq1q2 and dj = lp3,

2. di = lp1p2 or lq1q2 and dj = 2l,

3. di = lp1 and dj = 2lp2 or 2lq,

4. di = lp1 and dj = lq1,

5. di = lq1 and dj = lq2,

where in the items above l = p,

6. di = lp1 and dj = lp2,

7. di = lp1 and dj = 2l,

where l = pp′.

8. di = lq1 and dj = lpq2,

9. di = lq1 and dj = lp1,

10. di = lp1q1 and dj = 2l,

11. di = lq1 and dj = 2lp or 2lq2,

12. di = lp1 and dj = lp2,

such that l = q,

13. di = lp1 and dj = lp2,

14. di = lp1 and dj = 2l,

where l = qq′,

15. di = lq1 and dj = lq2,

16. di = lq1 and dj = 2l,

where l = pq.
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P r o o f. According to the Theorem 3.1, we have when Nε1 = Nε2 = Nε3 = 1 and
√
ε1ε2 ∈

K,
√
ε2ε3 ∈ K,

√
ε1ε3 ∈ K or

√
ε1ε2ε3 ∈ K such that e2 6= 4. Then, PO(K) ' (Z/2Z)t−4.

Hence, K is a Pólya field if and only if t = 4.

We suppose that (di, dj) ≡ (mi,mj) ≡ (1, 1) (mod 4), then we have dK = (lm1m2)
2. When

l = p, then K is a Pólya field if and only if either di = lp1p2 or lq1q2 and dj = lp3. When
l = pp′, then di = lp1, dj = lp2. If l = qq′, so di = lp1, dj = lp2.

When (di, dj) ≡ (1, 1) (mod 4), (mi,mj) ≡ (3, 3) (mod 4). So, we get that di = lq1,

dj = lpq2 such that l = q. When l = pq, so we have di = lq1, dj = lq2.

Assuming (di, dj) ≡ (1, 2) (mod 4), then dK = (4lm1m2)
2.

• When l = p and mj = 2, then di = lp1p2 or lq1q2, dj = 2l. Now for mj = 2p2, 2q2 so
di = lp1, dj = 2lp2, 2lq.

• We assume l = pp′, so di = lp1, dj = 2l. When l = qq′, we get di = lp1, dj = 2l. And
when l = pq, we obtain di = lq1, dj = 2l.

• When l = q and mj = 2, then di = lp1q1, dj = 2l. For mj = 2p, 2q2, so di = lq1,

dj = 2lp, 2lq2.

We suppose that (di, dj) ≡ (1, 3) (mod 4), then dK = (4lm1m2)
2. For l = p, then di =

lp1 dj = lq1. When l = q, so di = lq1 dj = lp1.

When (di, dj) ≡ (3, 3) (mod 4), i 6= j ∈ {1, 2} then dK = (4lm1m2)
2. When l = p, thus

di = lq1 dj = lq2. If l = q, so di = lp1, dj = lp2. As we have e2 6= 4, then (di, dj) not
congruent to (2, 3) (mod 4) for i 6= j = 1, 2.

E x a m p l e 4.1. Let K = Q(
√
7 · 5,

√
7 · 11). We have Nε1 = Nε2 = Nε3 = 1, and√

ε2ε3 ∈ K and e2 6= 4 (se Example 3.1). We have l = 7 ≡ 3 (mod 4) and 5 ≡ 1 (mod 4)

and 11 ≡ 3 (mod 4). So by the item 9 of the theorem above, we get that K is a Pólya field.

Theorem 4.6. Let K = Q(
√
d1,
√
d2) such that d1 = lm1 and d2 = lm2 are square-free

integers with l > 1 and gcd(m1,m2) = 1 and put j 6= k ∈ {1, 2}. Assuming Nε1 = Nε2 =

Nε3 = 1 and
√
ε1ε2 /∈ K,

√
ε2ε3 /∈ K,

√
ε1ε3 /∈ K and

√
ε1ε2ε3 /∈ K such that e2 6= 4. Then,

K is a Pólya field if and only if one of the following assertions is satisfied:
1. di = lp1p2 or lq1q2 and dj = lp3p4,

2. di = lp1p2 or lq1q2 and dj = lq3q4,

3. di = lp1p2p3 or lq1q2p1 and dj = lp′1,

4. di = lp1p2p3 or lq1q2p1 and dj = 2l,

5. di = lp1p3 or lq1q3 and dj = 2lp2,

6. di = lp1p3 or lq1q3 and dj = 2lq2,

7. di = lp3 and dj = 2lp1p2, 2lp1q1, 2lq1q2,

8. di = lp1q1 and dj = lq2,

9. di = lq1q2 and dj = lq3,

10. di = lp1p2 and dj = lq1,

11. di = lp1 and dj = lp2q1,

where in the items above we have l = p,

12. di = lp1q1 and dj = lp2q2,

13. di = lq1 and dj = lp1p2q2, lq2q3q4,

14. di = lp1p2 and dj = lp3,

15. di = lq1q2 and dj = lp1,

16. di = lq1p1 and dj = lp2,
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17. di = lq1 and dj = lp1p2, lq1q2,

18. di = lp1p2q1, lq1q2q3 and dj = 2l,

19. di = lp1q1 and dj = 2lp2, 2lq2,

20. di = lq1 and dj = 2lp1p2, 2lp1q2, 2lq2q3,

where l = q,

21. di = lq1 and dj = lq2,

22. di = lp1 and dj = lq1,

23. di = lp1 and dj = lp2p3, lq1q2,

24. di = lp1 and dj = 2lp2, 2lq1,

25. di = lp1p2, lq1q2 and dj = 2l,

where l = pp′,

26. di = lp1 and dj = lp2p3, lq1q2,

27. di = lp1 and dj = 2lp2, 2lq1,

28. di = lp1p2, lq1q2 and dj = 2l,

29. di = lq1 and dj = lq2,

30. di = lp1 and dj = lq1,

where l = qq′,

31. di = lp1q1 and dj = lq2,

32. di = lp1 and dj = lp2,

33. di = lq1 and dj = lp1,

34. di = lp1q1 and dj = 2l,

35. di = lq1 and dj = 2lq2, 2lp1,

such that l = pq,

36. di = lp1 and dj = lp2,

37. di = lp1 and dj = 2l,

such that l = pp′p′1,

38. di = lp1 and dj = lp2,

39. di = lp1 and dj = 2l,

where l = qq′p,

40. di = lq1 and dj = lq2,

41. di = lq1 and dj = 2l,

where l = pp′q or qq′q′1.

P r o o f. According to the Theorem 3.1, we have PO(K) ' (Z/2Z)t−5. Thence, K is a
Pólya field if and only if t = 5.

We suppose (di, dj) ≡ (mi,mj) ≡ (1, 1) (mod 4).

• When l = p. Hence, we have either di = lp1p2, lq1q2, dj = lp3p4 or di = lp1p2, lq1q2,

dj = lq3q4 or di = lp1p2p3, lq1q2p1, dj = lp′1.

• If l = pp′, then di = lp1, dj = lp2p3, lq1q2.

• When l = qq′, so di = lp1, dj = lp2p3, lq1q2.

• If l = pp′p′1, therefore di = lp1, dj = lp2.

• Now for l = qq′p, thus di = lp1, dj = lp2.

When (di, dj) ≡ (1, 1) (mod 4), (mi,mj) ≡ (3, 3) (mod 4).
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• When l = q, so we get either di = lp1q1, dj = lp2q2 or di = lq1, dj = lp1p2q2, lq2q3q4.

If l = pq, then we have di = lp1q1, dj = lq2. If l = pp′q or qq′q′1, we get that di = lq1,

dj = lq2.

Assuming (di, dj) ≡ (1, 2) (mod 4), then dK = (4lm1m2)
2.

• When l = p and mj = 2. So, K is a Pólya field if and only if di = lp1p2p3, lq1q2p1,

dj = 2l. For mj = 2p2, 2q2 we get either di = lp1p3, lq1q3, dj = 2lp2 or di = lp1p3, lq1q3,

dj = 2lq2. For mj = 2p1p2, 2p1q1, 2q1q2, we obtain di = lp3, dj = 2lp1p2, 2lp1q1, 2lq1q2.

• We assume l = pp′, then we get that either di = lp1, dj = 2lp2, 2lq1 or di = lp1p2, lq1q2,

dj = 2l.

• When l = qq′, then we get either di = lp1, dj = 2lp2, 2lq1 or di = lp1p2, lq1q2, dj = 2l.

• If l = pp′p′1, then di = lp1, dj = 2l.

• When l = qq′p, thence, di = lp1, dj = 2l.

When l = q and mj = 2, so di = lp1p2q1, lq1q2q3, dj = 2l. For mj = 2p2, 2q2, we
get that di = lp1q1 and dj = 2lp2, 2lq2. For mj = 2p1p2, 2p1q1, 2q1q2 so di = lq1 and
dj = 2lp1p2, 2lp1q2, 2lq2q3.

• We assume l = pq, then we get that either di = lp1q1, dj = 2l or di = lq1, dj =

2lq2, 2lp1.

• When l = qpp′ or qq′q′1, so di = lq1, dj = 2l.

We suppose that (di, dj) ≡ (3, 3) (mod 4), then dK = (4lm1m2)
2.

• When l = p, thence di = lp1q1, dj = lq2. When l = pp′, we get di = lq1, dj = lq2.

• For l = q, so di = lp1p2, dj = lp3 or di = lq1q2, dj = lp1. If l = qq′, then we get
di = lq1, dj = lq2.

• When l = pq, we get that di = lp1, dj = lp2.

We assume that (di, dj) ≡ (1, 3) (mod 4). So, dK = (4lm1m2)
2.

• We put l = p, thus we have either di = lq1q2, dj = lq3 or di = lp1p2, dj = lq1 or
di = lp1, dj = lp2q1. When l = pp′, we get di = lp1, dj = lq1.

• We let l = q, so di = lq1p1, dj = lp2 or di = lq1, dj = lp1p2, lq1q2. If l = qq′, then we
get di = lp1, dj = lq1.

• When l = pq, then di = lq1, dj = lp1.
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[11] T. Kubota, “Über den bizyklischen biquadratischen Zahlkörper”, Nagoya Mathematical Journal,
10 (1956), 65–85.

[12] K. S. Williams, “Integers of biquadratic fields”, Canadian Mathematical Bulletin, 13:4 (1970),
519–526.

[13] E. Haught, Bicyclic Biquadratic Number Fields, Masters Thesis, VPI&SU, Blacksburg, 1972.

Information about the author Информация об авторе

Said El Madrari, PhD, Faculty of Sciences and
Techniques, Moulay Ismail University, Errachidia,
Morocco. E-mail: saidelmadrari@gmail.com
ORCID: https://orcid.org/0000-0003-1632-8441

Эль Мадрари Саид, кандидат физико-
математических наук, факультет естествен-
ных наук и технологий, университет Мулая
Исмаила, г. Эр-Рашидия, Марокко. E-mail:
saidelmadrari@gmail.com
ORCID: https://orcid.org/0000-0003-1632-8441

Received 17.01.2025
Reviewed 19.04.2025
Accepted for press 23.04.2025

Поступила в редакцию 17.01.2025 г.
Поступила после рецензирования 19.04.2025 г.
Принята к публикации 23.04.2025 г.

http://www.vesnik.math.rs/inpress/mv2023_069.pdf

	Notations 
	Preliminaries
	The Pólya Groups of The Real Biquadratic Fields K=Q(lm1,lm2)
	 The structure of the first cohomology group of units of K=Q(lm1,lm2)
	 The Pólya groups of the real biquadratic fields K=Q(lm1,lm2)

	The Pólya Fields of The Real Biquadratic Fields K=Q(lm1,lm2)
	toReferences

