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Introduction

The Jacobi group is the semidirect product of the real symplectic group with Heisenberg
group of adequate dimension [9,10]. Several generalizations are known [12,20]. The Jacobi
groups are unimodular, nonreductive, algebraic groups of Harish-Chandra type. The
Siegel-Jacobi domains are nonreductive symmetric domains associated to the Jacobi groups
by the generalized Harish-Chandra embedding [12,16,21,22].

In [1] we have introduced Perelomov coherent states [13| defined on the Siegel-Jacobi
disk. Similar constructions have been used previously [11,14,17]|. The Jacobi group with
applications in Quantum Mechanics has been investigated in a series of papers [2-7]. The
present note is based manly on [5], where we have not used Perelomov coherent states. The
problem of Berezin quantization [8|, the fundamental conjecture for homogeneous Kéhler
manifolds, the classical and quantum evolution on Siegel-Jacobi domains, and the orthonor-
mal base of polynomials in which the Bergman kernel is developed, all summarized in our
the talk in accord with [2-7], are not included in this note.

1. Canonical automorphy factor and kernel function

Let $, be the Siegel upper half space of degree n consisting of all symmetric matrices
Q€ M,(C) with ImQ > 0. The symplectic group Sp(n,R) of degree n consists of all
matrices o € My, (R) such that ‘oJ,0 = J,, where

a b 0 I,
0_(0 d),a,b,c,dEMn(R), Jn_(—ln 0), (1.1)

The group Sp(n,R) acts transitively on $), by ¢Q = (aQ +0)(cQ +d)~ .

Let G® be a Zariski connected semisimple real algebraic group of Hermitian type. Let
D =G*/K* be the associated Hermitian symmetric domain, where K* is a maximal compact
subgroup of G*. Suppose there exist a homomorphism p : G* — Sp(n,R) and a holomorphic
map 7:9 — 9, such that 7(g9z) = p(g)7(2) for all g € G* and z € ©. The Jacobi group
G’ 19,12,20] is the semidirect product of G° and the Heisenberg group H[V] associated with
the symplectic R-space V' and the nondegenerate alternating bilinear form D : V xV — A,
where A is the center of H[V]. The multiplication operation of G/ ~ G*xV x A is defined
by

1
g9 = (o0’ p(o)v + v, 3¢+ 3 + §D(v, p(o)v'),

where g = (0,v,%) € G7, ¢ = (0/,v',5') € G’. The Jacobi-Siegel domain associated to
the Jacobi group G is defined by @7 =D x CN = G7/(K*® x A), where dim V = 2N
(cf. [9,12,20]). The definitions above are represented in the scheme below.

GY is an algebraic group of Harish-Chandra type [12,16,20].

Following [20] and [12], we obtain [5].
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G'=GxVxA

H[V| pr G* Sp(n,R)

\pr

(CN SN @JIQX(CN o @IGS/KS L’ S/jn:Sp(nu]R)/U(n)

Theorem 1.1. a) The Jacobi group G’ acts transitively on D7 by

g2 = (0, 4 Cerl) + )72, o) = (4 1),

where g = (o,v,%) € G and z = (w,2) € D7.
b) The canonical automorphy factor J for the Jacobi group G’ is given by

J(g,:l?) = (‘]1((77 w)707 Jg(g,l')),

where Jy is the canonical automorphy factor for G*°, and

1 1
J2(97ZE) =x+ §D(U7vaw) + §D(2U + ,0(0'>Z, JI(O',’U))Z).

¢) The canonical kernel function K for the Jacobi group G’ is given by
K(z,2") = (Ky(w,w"),0, Ky(z, ")),

where K is the canonical kernel function for G*, and

Ko(z,2) = D(27 + % W)z, q2) + %D(E’, g (@)7), g = p(Ky(w,w')) "L

The Heisenberg group H,(R) consists of all elements (A, u, k), where A\, u € My, (R),
k € R, with the multiplication law

Apr)o (N i /) = A+ N+ s k4 &4+ X — ).
Let GJ = Sp(n,R) x H,(R) endowed with the following multiplication law:
(0, (0ot ) - (0, (Vs i K1)) = (00", (A", i’ ) o (N ).

The Jacobi group G of degree n acts transitively on the Jacobi-Siegel space ! = 6, x C"
by g(Q,C) = (997Cg)7 where

Q= (@Q+0)(cQ+d)7" G=v(Q+d)", v=C+ A2+ (1.2)
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Proposition 1.1. The canonical automorphy factor J, and the canonical kernel
function Ky for Sp(n,R) are given by

o= (O 1)
RMQJD:(“Yfﬁl QBQ),

where ,Q € 9, and o € Sp(n,R) is given by (1.1).
The canonical automorphy factor 6 = Jo(g, (,¢)) for G is given by

O=k+ANCHv AN—v(Q+d) ey, v=C+A2+pu, (1.3)
where g = (0, (\, u,k)) € G, o is given by (1.1), and (,¢) € H.
The canonical automorphy kernel Ko for G is given by

1

K> (¢, 9), (¢, 9) = =

!/

(=@ =) ("¢ = 0). (1.4)

Let ®,, be the Siegel disk of degree n consisting of all symmetric matrices W € M,,(C)
with I, — WW > 0. Let Sp(n,R), be the multiplicative group of all matrices w € My, (C)
such that

w = (g g) . 'op—"qq =1, 'pg="gp, p,q € M,(C). (1.5)

The group Sp(n,R), acts transitively on ©,, by wW = (pW + q)(@W + p)~!. Let
K, =2 U(n) be the maximal compact subgroup of Sp(n,R), consisting of all w € Sp(n, R),
given by (1.5) with p € U(n) and ¢ =0. Then ©,, = Sp(n,R)./U(n).

Let GZ, be the Jacobi group consisting of all elements (w, (a, 7)), where w € Sp(n,R),,
a € C" € iR, and endowed with the multiplication law

(W' (o, ) (w, (o, 5)) = (w'w, B+, 2+ i + Bla— Bta) ,

where (w, (a, %)), (W', (/,5)) € Gy, b= o'p+a'q, and w is given by (1.5).

The Heisenberg group H, (R )* consmts of all elements (I, (a, x)) € G, with a € C",
» € iR. The center A, =R of H,(R), consists of all elements (]n, (0,2) € G, »€iR.
There exists an isomorphism © : GJ — GJ_ given by O(g) = g, g = (0, (\, i, k) € G,

9 = (w, (o, %)) € G, )
(o) e=Gr)

1 i 1 . .
§(ai—d)i§(b$c), azﬁ(/\jtl,u), 2= —ig.

Let ®J = D, x C"=GJ /(U(n) x R) be the Siegel-Jacobi disk of degree n. G, acts
transitively on ®7 by g.(W, z) = (W,,,2,.), where

P+ =

Wy, = (bW +q)@W +D9) 7", 2. = (z+ oW +a)(@W +p) . (1.6)
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We now consider a partial Cayley transform of the Siegel-Jacobi disk D onto the Siegel-
Jacobi space $; which gives a partially bounded realization of 7 [22]. The partial Cayley
transform ¢ : D) — §7 is defined by

Q=il,+ W)L, - W)™, ¢=2iz(L,—W)!, (1.7)

where ((,Q) = ¢ ((W,2)) and (W,2) € ®J. Thr map ¢ is a biholomorphic map which
satisfies g¢ = ¢g. for any g € G/ and g, = O(g) [22].
The inverse partial Cayley transform ¢! : $7 — D7 is given by

W= (Q—il,)(Q+il,)™", 2= (Q+il,)" (1.8)
The situation is summarized in the diagram below.

0:G! - G
J n nx _ 7
Gn i Gn*

J iso

cn [N f)‘r]L =9H, xC" « e = Sp(TMR)/U(n)

o i e e

¢

Proposition 1.2. The canonical automorphy factor Ji. and the canonical kernel
function Ky, for Sp(n,R). are given by

t(= =\—1
qW +7p 0
Jl*(w’w)_< | 0 | QWH‘?)’
I, —WWwW 0
K (W, W) = < 0 W1, — WW)™ ) 7

where W, W' € ®,, and w € Sp(n,R), is given by (1.5).
The canonical automorphy factor 0, = Jy(gns, (W, 2)) for G is given by

0, =k, +2za+v.a—v.(@W+p) G, v.=z+aW +a, (1.9)

where g, = (w, (o, ) € G

nk )

w 1is given by (1.5), and (W, z) € D..
The canonical automorphy kernel for GZ_ is given by

Ko (W' 2),(W,2)) = A(W', 2"; W, 2),
where (W, 2), (W', 2') € ®7, and

1 ,— _ -
AW’ 25 W,2) = (2 + 22 W)L = W)™+ 20— W) W= (1.10)

| —
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2. Scalar holomorphic discrete series

Consider the Jacobi group GY. Let ¢ be a rational representation of GL(n,C) such
that 0|yw) is a scalar irreducible representation of the unitary group U (n) with highest
weight k, k € Z, and 6(A) = (det A)F [23]. Let m € R. Let x = § ® Y™, where the
central character x™ of A =R is defined by x" (k) = exp (2mimk), k € A. Any scalar
holomorphic irreducible representation of G is characterized by an index m and a weight
k. Suppose m >0 and k >n+1/2.

Let H™F denote the Hilbert space of all holomorphic functions ¢ € O($7) such that
l¢llgs < oo with the inner product defined by [18]

(00 =C [ o OREL™@.07 dp(2.0),

where C' is a positive constant, (2,() € 7 and the G -invariant measure on ; is given
by
dp(Q,¢) = (det V)™ T[ d&dn; [] dXjndYin

1<i<n 1<j<k<n

Here £ =Re(, n=Im({, X =Re), Y =Im.

The kernel function K™ is defined by [18]

K™H(92,¢) = K™ ((92,), (2,€)) = exp (4mmny " ') (det Y)Y,

K100 (6, 90) = (det( 50— 500) Fexp(zmimK (¢ 92), (€. ).

where K is given by (1.4).
Let 7™ be the unitary representation of G on H™ defined by [18]

(ﬂ-mk<g71)90> (Qv C) = jmk(ga (Qu <)>()0(Qg7 Cg>7

where o € H™ ge G, (2,¢) € ) and (Q,,(,) € H is given by (1.2).
The automorphic factor J™* for G is defined by [18]
T (9,(C, ) = (det(c2 + )" exp(2mimd),

where 6 is given by (1.3) and o is given by (1.1).
Takase proved the following theorem [18,19]:

Theorem 2.1. Suppose k > n + 1/2. Then H™ # {0} and 7™ is an irreducible
unitary representation of G which is square integrable modulo center.

Let H™* denote the complex pre-Hilbert space of all ¢ € O(D;]) such that ||1)[g, < oo
with the inner product defined by

(1, )os = Cu [ 01 (W, 2) (W, 2) (KTH(W, 2)) " du(W, 2),
ol
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where C, is a positive constant, (z, W) € D7,
KW, z) = (det(1, — WW))_k exp(8mmA(W, z)),
and A(W, z) = Ky (W, 2), (W, 2)) can be written as

1 — _ 1 _
AW, 2) = (z+ EZW)(In —WW) iy 5z([n —WW) 'w itz

and the G -invariant measure on ®; is [22]

dv(W, z)=(det(1-WW)) "] [dRez;dImz; [[ dReWjpdImWy,

i=1 1<j<k<n

According with [15,22], and (1.10), the kernel function K™ is given by
MW, 2) = KT (W, 2), (W, 2)),

where

K™ (2, W), (2, W) = (det (I, — W) "exp (SemA(W’, 2'; W, 2)).

We now introduce the map g, — 77%(g,), where 77%(g,): H™ — H™* is defined by

(7 (g2 D)) (2, W) = T (g, (2, W) (2., W),
Y e HM™, g, = (w,(a,%) € GL , (2,W) €D, and (z,,,W,.) € DJ is given by (1.6).
The automorphic factor J™* for G7_ is defined by [15,22)]

T (g, (2,W)) = exp(2mimd. ) (det(qW +p)) ™",
where 0, is given by (1.9) and w given by (1.5).

Proposition 2.1. Suppose m >0, k>n+1/2, and C =2"")C,. Then

a) H™ #£ {0} and 7™ is an irreducible unitary representation of G, on the Hilbert
space H™ which is square integrable modulo center.

b) There exists the unitary isomorphism T : H™ — H™E given by

©0(Q,0) = (W, 2) (det(I,, — W) exp(dnmz(I, — W) 12),

where § € M, o = TPH(p), (W,2) € D, () = ¢(-W,2)) € 81, and ¢ is given
by (1.7).

The inverse isomorphism T™F : H™k — H;”k s given by
¥ (W, 2) = () (det(I, i) exp (27mC (I, —i2) 1 ¢)

where ¢ € H™ Y =T™(p) , (,() € 9y, (-W.2) =61 ((() € Dy, and ¢~ s
given by (1.8).
c¢) The representations ™% and 7™ are unitarily equivalent.
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