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AwnunoTtamums. Jta cTarhs IpejiaraeT Kparkoe Beenne B reoputo [leppona—Ppobenuyca B
Makc-ajredpe u B HEOTPHUIATETLHOM JIMHEHHON aJirebpe, a TakKe 00CyXKIeHIe Pe3yJIbTaTOB,
KACAIOIIUXCsl CEPJIIEBUH HEOTPUIATEILHBIX MATPHUI], I[TOHUMAEMbIX B JIBYX CMBICJIAX.
O6praHas cep/IIieBIHa HEOTPUIATEIBLHON MATPHILI OIpeiesigeTcd KaK (i>1Span +(Ak ), TO
€CTh KaK IIepeceveHune MoIpOCTPAHCTB, HATAHYTHIX Ha HEOTPUIIATEIbHBIE CTOJIOIBI CTEIIeHeH
9TOM MATPUIIBI. DTOT OOBEKT BazKkeH Jijist 00branoii Teopun [leppona—Ppobermnyca. On mmeer
MIPUJIOXKEHUsT B 9PrOJUIECKOil Teopun. MBbI IpoC/IeKnBaeM IPSAMYIO MAaKC-aJIredpandecKyro
AHAJIOTUIO U MPOSIBJISIEM COBIIQJICHUS] U Pa3/ndust 00enx Teopuii.
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1. Introduction
1.1. Basic Perron-Frobenius theory

We study the matrices with nonnegative entries, such as the following one:

0O 0 2 0
0.5 0 0
0 1 0 01 (1.1.1)
0 02 0 1

The set of matrices of dimension n with real nonnegative entries will be denoted by R’*".

With a matrix A = (a;;) € R" we associate a weighted (di)graph G(A) with the set
of nodes N = {1,...,n} and set of edges E C N x N containing a pair (¢,7) if and only
if a;; # 0; the weight of an edge (i,j) € E is defined to be w(i, j) := a;;. A graph with just
one node and no edge will be called trivial. The digraph associated with (1.1.1) is shown on
Figure 1.

A path P in G(A) is a sequence of nodes 1y, 71, ..., 3; such that each pair (ig, 1), (i1, 72),
vy (14—1,7¢) is an edge in G(A). It has length I(P) := t and weight w(P) := w(ig,1) -
w(iy,ig) -+ w(iz_1,1%), and is called an ¢ — j pathif io = and i, = j. A path P is called
a cycle if iy = 1;, and a cycle is called elementary if all nodes of the cycle are different. In
particular, consider the following elementary cycles on the digraph on Figure 1: “3,2,1,3”,
“34,21,37 “4,4”

A = (a;;) € R is irreducible if G(A) is trivial or for any 7,5 € {1,...,n} there is an
1 — j path. Otherwise A is reducible.

We do not actually list all the cycles here. As defined above, two cycles may have the same set of edges
but different start and end nodes.
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Figure 1: The weighted digraph associated with (1.1.1).

Observe that (1.1.1) is irreducible. For instance, both 3,2, 1 and 3,4,2,1 are 3—1 paths.

By the Perron-Frobenius theorem, any irreducible matrix A € R}*" has a positive
eigenvalue, which is of the largest modulus among all the eigenvalues of A. This eigenvalue
p 1is simple, that is, all eigenvectors associated with it are multiples of just one eigenvector
(nonzero z satisfying Ax = px ). This eigenvalue is called the Perron root of A and denoted
by p*(A).

Notation A** will stand for the usual kth power of a nonnegative matrix.

An irreducible nonnegative matrix does not have any other eigenvalues with a nonnegative
eigenvector. Indeed, let p := pT(A), and let A be such an eigenvalue, then A\ < p. Let
x, resp. y be two nonzero eigenvectors associated with p, resp. A. The irreducibility of
A then implies that both x and y have all components positive, and then there exists a
number s such that = < sy. Then we also have AX'x < sA*'y for all t, so plz < s\ly for
all t. However, if p > A, then this is impossible.

In the case of (1.1.1), applying the MATLAB function “eig (A)” we can find that the four
eigenvalues (over complex field) are equal, approxiamately, to —0.4966 +0.8641:, —0.4966 —
0.86417, 1.0785 and 0.9147. The first two eigenvalues are complex conjugates of each other,
with the absolute value (approximately) 0.9967 , and the corresponding eigenvectors are also
complex. The last two eigenvalues are real positive, but only the bigger eigenvalue 1.0785
has a positive eigenvector: approximately (0.5873 0.2723 0.3167 0.6933). So 1.0785 is the
Perron root of (1.1.1), with essentially unique (real positive) Perron eigenvector.

In the general (reducible) case, a matrix A may have several eigenvalues with nonnegative
eigenvectors, but in general, not all eigenvalues of A have this property. The structure of
the set of eigenvectors associated with a particular eigenvalue may be also not so trivial.
The set of nonnegative eigenvectors associated with a particular eigenvalue p is denoted by
Vi(A4,p), and it is a convex cone.

Recall that a set V' C R% is called a convexr cone if 1) av € V for all v € V and
a€R,,2) ut+v eV for u,v € V. Convex sets and convex polytopes can be viewed as
section of convex cones by planes (for instance, requiring some coordinate to be constant).
A convex cone V is said to be generated by S C R’ if each v € V' can be represented as

The reasons for this unusual notation for (usual) matrix power will soon become clear
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a nonnegative linear combination v = €, ¢ a,x where only finitely many nonnegative o,
are different from zero. When V' is generated by the columns of a matrix A, this is denoted
by V =span,(A).

The Perron-Frobenius theorem and its extensions have many different proofs and ap-
plications. There are well-known applications in mathematical biology, say, in population
dynamics [34], and most recently and notably, to Google PageRank. See Wikipedia, an
original work of Frobenius [26], the survey of Schneider [45] and the textbooks of Berman-
Plemmons [12] and Brualdi-Ryser [14].

Note that in what follows we are concerned only with nonnegative eigenvalues and non-
negative eigenvectors of a nonnegative matrix. In order to bring our terminology into line
with the corresponding theory for max algebra we use the terms eigenvalue and eigenvector
in a restrictive fashion. That is, we shall further call p an eigenvalue of a nonnegative matrix
A (only) if there is a nonnegative eigenvector x of A for p. Further z will be called an
eigenvector (only) if it is nonnegative.

1.2. Max-algebraic Perron-Frobenius

By max algebra we understand the set of nonnegative numbers R, where the role of
addition is played by taking maximum of two numbers: a @ b := max(a,b), and the multi-
plication is as in the usual arithmetics. This is carried over to matrices and vectors like in
the usual linear algebra so that for two matrices A = (a;;) and B = (b;;) of appropriate
sizes, (A® B);; = a;; ® bij and (A® B)y, = @, aixby; . Notation A®* will stand for the
k th max-algebraic power.

In particular, we have 2 x 2 =4 but 2@ 2 =2, and

1 3 2 3 5\ (3 5
5 6 1 0/ \15 25/)°
A set V C R7? will be called a maz cone if 1) av € V for all v € V and a € Ry,
2) ud®v €V for u,v € V. Max cones are a special case of idempotent semimodules,
see [8,35]. A max cone V is said to be generated by S C R’ if each v € V can be

represented as a max combination v = @__q a,xr where only finitely many (nonnegative)

z€eS
o, are different from zero. When V is gerelerated by the columns of a matrix A, this is
denoted V' = spang(A). Max cones are max-algebraic analogues of convex cones.

A vector z in a max cone V C R is called an extremal if z = v ® v and u,v € V
imply z =wu or z =wv. Any finitely generated max cone is generated by its extremals, see
Wagneur [53], and [18, 28| for more recent extensions (for instance, the tropical Minkowski

theorem). The mazimum cycle geometric mean of A is defined by
p®(A) = max{w(C)V"D; Cis a cycle in G(A)} . (1.2.2)

Recall that w(C') denotes the product of all weights of the edges in C', and [(C) is the
number of edges (that is, the length). The critical graph of A, denoted by C(A), consists
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Figure 2: The critical graph of matrix (1.1.1).

of all nodes and edges belonging to the cycles which attain the maximum in (1.2.2). The
set of such nodes will be called critical and denoted by N.; the set of such edges will
be called critical and denoted by FE.. Observe that the critical graph, defined as above,
consists of several strongly connected subgraphs of G(A). Maximal such subgraphs are the
strongly connected components of C(A). For example, the critical graph of (1.1.1) is shown
on Figure 2 (the bold arcs).

If for A € RY*" we have A® x = px with p € Ry and a nonzero x € R}, then p is a
mazx(-algebraic) eigenvalue and x is a maz(-algebraic) eigenvector associated with p. The
set of max eigenvectors z associated with p, with the zero vector adjoined to it, is a max
cone further denoted by Vg (A4, p). It is called the eigencone of A associated with p.

In general (reducible) case, a matrix A € R}*" may have several max eigenvalues. The
greatest max eigenvalue is equal to p®(A) (see [11,16,24,32]), and it is called the principal
eigenvalue. The corresponding eigencone is called the principal eigencone. It is also known
that if A is irreducible then p®(A) is the only eigenvalue, which we call the maz-(algebraic)
Perron root of A (the proof of this uniqueness is the same as in the classical argument
writen above for the nonnegative case). However, unlike in the usual nonnegative Perron-
Frobenius theory discussed above, an irreducible matrix A may have several eigenvectors.
For instance, (1.1.1) has the following non-proportional eigenvectors:

v =(105050.1), »*»=(0.20.10.11).

Roughly speaking, extremal vectors of Vg(A, p?(A)) correspond to the components of the
critical graph. For explicit description of Vg (A, p®(A)), see Theorem 3.4.2 below. It uses
the Kleene star

A=T0Ap A’ Aq..., (1.2.3)

where I denotes the identity matrix. Series (1.2.3) converges if and only if p#(A4) < 1,
which case A*=T® A®...® A" . Note that if p®(A) # 0, then p®(A/p®(A)) =1, and
so (A/p®(A))* always converges.

®l -
i is
equal to the greatest weight of ¢ — j paths with length [. Consequently, for i # j, the
entry aj; of A* isequal to the greatest weight of i — j paths (with no length restrictions).

The path interpretation of max-algebraic matrix powers A®' is that each entry a
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1.3. Max algebra: historical notes

The max-algebraic eigenproblem is perhaps one of the most well-known efficiently re-
solved problems of max algebra. Its theory was initiated, in particular, by Cuninghame—
Green [24,25] and Vorobyev [1-3], with scheduling and economic motivations in mind. The
full description of eigenvector cone in the irreducible case was written by Gondran and Mi-
noux [30], and the reducible case was described by Gaubert [27], see also [17] for a complete
exposition. Further evolution of max algebra and its applications in scheduling and discrete
event systems can be learnt from [5,11,32|. In Russia, max algebra was developed by aca-
demician Maslov and his school |7, 8, 39| as algebraic foundation of idempotent analysis, a
new area of mathematics with applications in mathematical physics and optimal control. In
particular, Dudnikov and Samborkif [4] and later Shpiz [9] extended the max-algebraic eigen-
vector existence theorem to more general idempotent semimodules. Litvinov, Maslov and
Sobolevskil [6] developed idempotent interval analysis. For the current developments in max
algebra, idempotent analysis, tropical convexity and related areas, see, e.g., survey of Akian,
Bapat and Gaubert [10], monographs of Butkovi¢ [16] and McEneaney [40], collections of
papers [36-38|.

1.4. Core of nonnegative matrix

The main topic of this paper, which is mostly a shorter version of [19], is the core of
nonnegative matrix, defined in nonnegative algebra as corey(A) := Ni>ispan, (A*¥) | and
in max algebra as, coreg(A) := Ni>1spang (A®*) (so that we can write

core(A) := N1 span(A*)

to unite both definitions). The concept of matrix core was introduced by Pullman in [44].
This led to a geometric approach to the proof of the Perron-Frobenius theorem based on the
properties of the core. Pullman investigated the action of a matrix on its core showing that
it is bijective and that the extremal rays of the core can be partitioned into periodic orbits.
In other words, extremal rays of the core of A are nonnegative eigenvectors of the powers
of A (associated with positive eigenvalues).

Our main purpose in [19] was to extend Pullman’s core to max algebra, thereby
investigating the periodic sequence of eigencones of max-algebraic matrix powers. However,
following the line of [18,21,33], we developed the theory in max algebra and nonnegative
algebra simultaneously, in order to emphasize common features as well as differences, to
provide general (simultaneous) proofs where this is possible. We did not aim to obtain
new results on the usual core of a nonnegative matrix with respect to [44,52] (although
our unifying approach possibly led to new and more elementary proofs). Our motivation is
closely related to the Litvinov-Maslov correspondence principle [35], viewing the idempotent
mathematics (in particular, max algebra) as a “shadow” of the “traditional” mathematics
over real and complex fields.

Pullman’s core can be also seen as closely related to the limits of powers of nonnegative
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matrices. However it is a different concept. Consider the simple example

<(1) o(.)5> '

Then, for any nonnegative z, A*z will tend to a multiple of (1, 0)7 while the core of A
is the entire nonnegative orthant Ri .

To the authors’ knowledge, the core of a nonnegative matrix has not received much
attention in linear algebra. However, a more detailed study has been carried out by Tam
and Schneider [52], who extended the concept of core to linear mappings preserving a proper
cone. The case when the core is a polyhedral (i. e., finitely generated) cone was examined in
detail in [52, Section 3|, and the results were applied to study the case of nonnegative matrix
in [52, Section 4]. This work has found further applications in the theory of dynamic systems
acting on the path space of a stationary Bratteli diagram. In particular, Bezuglyi et al. [13]
describe and exploit a natural correspondence between ergodic measures and extremals of
the core of the incidence matrix of such a diagram. The perspectives of a max-algebraic
analogue of this theory are yet to be explored.

There is also much more literature on the related but distinct question of the limiting
sets of homogeneous and non-homogeneous Markov chains in nonnegative algebra; see the
books by Hartfiel [31] and Seneta [47] and, e.g., the works of Chi [22] and Sierksma [51]. In
max algebra, see the results on the ultimate column span of matrix powers for irreducible
matrices [16, Theorem 8.3.11], [48|, and by Merlet [41] on the invariant max cone of non-
homogeneous matrix products.

1.5. Organization

The rest of the paper is divided into two main sections: Preliminaries and Main results.
Preliminaries are occupied with the rest of prerequisites, to understand the situation even
better. The proofs of Main results can be found in [19]. In some cases, some hints for the
proofs are given. Examples illustrating our results can be found in [19] (the last section).

2. Preliminaries
2.1. Ultimate periodicity and immediate periodicity

For a strongly connected graph G, define its cyclicity o as the ged (greatest common
divisor) of the lengths of all elementary cycles and the cyclicity of a trivial graph to be 1.
For a (general) graph containing several maximal strongly connected components (such as
the critical graph C(A)), cyclicity is defined as the lem of the cyclicities of the strongly
connected components. A graph with cyclicity 1 is called primitive. The following result
demonstrates importance of cyclicity of critical graph in max algebra. See also [11].

Theorem 2.1.1. /23, Cyclicity Theorem, Cohen et al.]. Let A € RY*™ be irreducible
and let o be the cyclicity of C(A). Then o is the smallest p such that there exists T(A)
with A®UHP) = (p@)P(A)A®t for all t = T(A).
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In the case when A is (1.1.1), we have T(A) =5, and A®', for ¢t = 5,6,7 are shown
below:

0.02 2 0.04 0.2 1 004 0.04 0.2 0.02 004 2 0.2
0.01 0.02 1 0.1 0.01 1 0.02 0.1 0.5 0.02 0.02 0.1
0.5 0.02 0.02 0.1]° 0.01 002 1 0.1]’ 001 1 0.02 0.1
01 02 02 1 01 02 02 1 01 02 02 1

Theorem 2.1.1 is closely related to the theory of graph exponents as presented, for in-
stance, in Brualdi-Ryser [14]. We will need the following formal definition.

A sequence {Nj}i>1 is called periodic if there exists an integer p such that Ny, is
identical with Ny for all k. The least such p is called the period of {N;}r>1. A sequence
{Np =1 is called wltimately periodic if the sequence {Wg}i>r is periodic for some 7' > 1.
The least such T is called the periodicity threshold of {Ny}gs1 -

In terms of the ultimate periodicity, Theorem 2.1.1 can be formulated as follows: for any
irreducible nonnegative matrix A € R*" | the sequence of matrix powers {(A4/p®(A))®'}
with ¢ > 1 is ultimately periodic with the period equal to the cyclicity of critical graph.
Slightly generalizing the notion of ultimate periodicity, it can be also said that {A®'} with
t > 1 is ultimately periodic with growth rate p®(A).

We also note that for a general reducible matrix A € R}*" | not all the sequences {ag-)}@l
for i,7 € {1,...,n}, are ultimately periodic in the sense of the definition given above. Such
sequences can be decomposed into ultimately periodic subsequences with different growth
rates, and the reader is referred to De Schutter [46], Gavalec [29] and Molnarova [42], Sergeev-
Schneider [49] for more details.

2.2. Frobenius normal form

Every matrix A = (a;;) € R}7*" can be transformed by simultaneous permutations of
the rows and columns in almost O(nlogn) time to a Frobenius Normal Form (FNF) [12,14]

A 0 .o 0

A21 A22 0 (2 9 1)
e Ay ]

Arl Ar2 A'r'r

where Aiq,..., A, are irreducible square submatrices of A. They correspond to the sets of
nodes Ni,..., N, of the strongly connected components of G(A). Note that in (2.2.1) an
edge from a node of N, to a node of N, in G(A) may exist only if > v.

Generally, Ag; denotes the submatrix of A extracted from the rows with indices in
K C N and columns with indices in L € N, and A, is a shorthand for Ay, .
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Frobenius normal form of a matrix is not uniquely defined. Here is an example of a
nonnegative matrix (left) and its Frobenius form (right)

Ot O O &~
= = W O
N O O D
O = =N
Ot =~ O O
N O O O

1
3
’ 0
1

SN = =

If A is in the Frobenius Normal Form (2.2.1) then the reduced graph, denoted R(A),
is the (di)graph whose nodes correspond to N, for p = 1,... 7, and the set of arcs is
{(g,v); 3k € N,)(3 € N,)ag, > 0}. In max algebra and in nonnegative algebra, the
nodes of R(A) are marked by the corresponding eigenvalues (Perron roots), denoted by
py = p®(Au,) (max algebra), pif := p™(A,,) (nonnegative algebra), and by p, when both
algebras are considered simultaneously.

A class pu is trivial if A, is the 1 x 1 zero matrix. Class p accesses class v, denoted
w— v, if p= v orif there exists a u — v path in R(A). A class is called initial, resp.
final, if it is not accessed by, resp. if it does not access, any other class. Node i of G(A)
accesses class v, denoted by ¢« — v, if ¢ belongs to a class p such that © — v.

2.3. Elements of reducible spectral theory

In this section we recall some elements of the spectral theory of reducible matrices in
max algebra and in nonnegative linear algebra. All results are standard: the nonnegative
part goes back to Frobenius [26], Sect. 11, and the max-algebraic counterpart is due to
Gaubert [27], Ch. IV ( see [16] for other references).

A class v of A is called a spectral class of A associated with eigenvalue p # 0, or
sometimes (A, p)-spectral class for short, if

py = p, and p — v implies p7 < pf (max algebra), (23.2)
py = p, and p — v, # v implies p < p; (nonnegative algebra). o

In both algebras, note that there may be several spectral classes associated with the same
eigenvalue. In nonnegative algebra, spectral classes are known as distinguished classes [45],

Denote by A;(A), resp. Ag(A), the set of nonzero ecigenvalues of A € R}V in
nonnegative linear algebra, resp. in max algebra. It will be denoted by A(A) when both
algebras are considered simultaneously, as in the following standard description.

Theorem 2.3.1. [16, Th. 4.5.4], [45, Th. 3.7]. Let A € R*". Then
A(A) = {p, #0; v is spectral}.
Theorem 2.3.1 encodes the following two statements:

Ag(A) = {p? #£0; vis spectral}, A, (A) = {p} #0; v is spectral}, (2.3.3)
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where the notion of spectral class is defined in two different ways by (2.3.2), in two algebras.
See the illustrations of spectral classes of marked reduced graph in [16,17] (in max algebra)

and in [21] (also in nonnegative algebra).
In both algebras, for each p € A(A) define

A, =p! (0 0 ) , Where

0 AMpMp

(2.3.4)
M, = {i; i = v, v is spectral with Perron root p} .

Then the case of an eigencone associated with any eigenvalue can be reduced to the case
of principal eigenvalue, as follows:

Proposition 23.1. [16,27. For A € R and each p € A(A), we have
V(A,p) =V(A, 1), where 1 is the principal eigenvalue of A, .

2.4. Access relations in matrix powers

In [19] we demonstrated that access relations and spectral classes of all matrix powers
are similar, and that the case of an arbitrary eigenvalue reduces to the case of the principal
eigenvalue. These results have simultaneous proofs in both algebras, which is due to the
fact that the definitions of spectral classes are similar and that the associated unweighted
digraphs of A** and A®' are the same. Their nonnegative part goes back to Frobenius [26],
and in some cases, is explicitly formulated in Tam-Schneider [52].

Lemma 2.4.1. [19], [26,52]. Let A be irreducible with the (unique) eigenvalue p, let
G(A) have cyclicity o and t be a positive integer. Then, A' is a direct sum of gcd(t, o)
irreducible blocks with eigenvalues p', and A’ does not have eigenvalues other than p'. The
cyclicity of each block is o/ ged(t, o). In particular, all blocks of A% are primitive.

Recall that each class i of A corresponds to an irreducible submatrix A, . It is easy to
see that (A"),, = (A,,)" for any positive integer ¢. Suppose that the cyclicity of G(A4,,) is
o . Applying Lemma 2.4.1 to A, we see that g gives rise to ged (¢, 0) classes in A", which
are said to be derived from their common ancestor p. The classes of A and A’ derived
from the common ancestor will be called related. Note that this is an equivalence relation
on the set of classes of all powers of A.

It can be checked that the same notions can be defined for the components of critical
graphs, see [19].

Let us recall the following results on the similarity of access relations in matrix powers.

Lemma 2.4.2. [19], [26,52]. For all t,l > 1 and p > 0, an index i € {1,...,n}
accesses (resp. is accessed by) a class with Perron root p' in A" if and only if it accesses
(resp. is accessed by) a related class with Perron root p' in A!.

Similar results holds for the strongly connected components of the critical graphs of
matrix powers [19)].
All eigenvalues and spectral classes of matrix powers are derived from those of A.
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Theorem 2.4.1. [19], [26,52]. Let A€ R*" and t > 1.
(i) A(AY) = {p'; p € A(A)}.
(ii) For each spectral class p of A with cyclicity o there are ged(t, o) spectral classes of
At derived from it. Conversely, each spectral class of Al is derived from a spectral

class of A.

As in the case of eigencones of a matrix, when working with V' (A?, p*) we can assume
that p =1 is the principal eigenvalue of A, and hence of all A°.

Theorem 2.4.2. [19], [26,52]. Let Ac RY™, t>1 and p € A(A).

(1) (A)agn, = (Pt(Ap)t)MpMp :
(ii) V(AL p') = V((A,),1).

3. Core and eigencones
3.1. The main concepts
The notions given in this subsection are the central notions of [19]. They are defined in
two algebras simultaneously.
Once again, the core of a nonnegative matrix A is defined as the intersection of the
column spans (in other words, images) of its powers:

core(A) 1= N2 span(A"). (3.1.1)

The (Minkowski) sum of eigencones of a nonnegative matrix A is the cone consisting of
all sums of vectors in all V(A,p):

VEA) = ) V(A p). (3.1.2)

pEA(A)

If A(A) =0, which happens when p(A) = 0, then we assume that the sum on the right-hand
side is {0} .

Further, the following notations can be seen as the “global” definition of cyclicity in
nonnegative algebra and in max algebra.

1. o0, is the the lem of all cyclicities of spectral classes associated with p € AL (A)
(nonnegative algebra), or the cyclicity of critical graph associated with p € Ag(A)
(max algebra).

2. oy is the lem of all o, where p € A(A).

3.2. Two cores of a nonnegative matrix

One of our main results relates the core with the sum of eigencones. The nonnegative
part of this result can be found in Tam-Schneider [52, Th. 4.2, part (iii)], and the proof of
it (in the nonnegative case) goes back to Pullman [44].
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Theorem 3.2.1. [19], [{4,52]. Let A€ R*". Then

core(A) = Y V(A" pF) =VF(A™).

k>1,0€A(A)

The following observations were used in the proof, and they are also of independent
interest. They hold in both algebras with simultaneous proofs where only elementary analytic

arguments are used.

Proposition 3.2.1. [19], [44]. Assume that {K;} for | > 1, is a sequence of
cones in R} such that K,y C K; for all I, and each of them generated by no more than
k nonzero vectors. Then the intersection K = N2, K is also generated by no more than k

vectors.

Proposition 3.2.1 seems to be an interesting geometric observation, which could be applied
in a more general situation (for instance, in the context of tropical or nonnegative matrix

semigroups).

Proposition 3.22. [19], [44] Let Ae RY™", then
(i) core(A) is generated by no more than n vectors,
(ii) the mapping induced by A on core(A) is a surjection,
(i1i) the mapping induced by A on the scaled extremals of core(A) is a permutation (i.e.,
a bijection).
In the case of nonnegative algebra, the action of matrix on its core is not only surjective

but also bijective. However, this does not hold in the case of max algebra, which leads us to
the problem statements and results of [20].

3.3. Periodicity of the eigencone sequence

The following main result was obtained both in max and nonnegative algebra (Explicit
publication of the (usual) nonnegative part of this result is unknown to us).

Theorem 3.3.1. [19]. Let A e R . Then
(i) o,, for p € A(A), is the period of the sequence {V(A* p")}is1, and V(AR pF) C
V(A% p%) forall k> 1;
(ii) o is the period of the sequence {V=(AF)}is1, and VE(AF) CVE(A%Y) forall k > 1.

More precise results can be formulated in the form of equivalence.

Theorem 3.3.2. [19]. Let A € RY™ and o be either the cyclicities of spectral classes
of A (nonnegative algebra) or the cyclicities of critical components of A (max alge-
bra).The following are equivalent for all positive kI :

(i) ged(k,o) divides ged(l,0) for all cyclicities o ;
(ii) ged(k,o,) divides ged(l,0,) for all p € A(A);
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(iii) ged(k,on) divides ged(l,0p);

(iv) V(A p*) C V(AL PY for all p € A(A) and
(v) VE(AR) CVE(A)).

Theorem 3.3.3. Let A € RY"™ and o be either the cyclicities of spectral classes (non-
negative algebra) or the cyclicities of critical components (max algebra) associated
with some p € A(A). The following are equivalent for all positive k, 1 :

(i) ged(k,o) divides ged(l,0) for all cyclicities o ;
(ii) ged(k,0,) divides gcd(l,0,);
(iii) V(A% p") C V(AL p).

The proof of Theorems 3.3.2 and 3.3.3 (and hence, Theorem 3.3.1 which can be obtained
as their corollary) are based on the so-called Frobenius-Victory theorems, which are written,
for both algebras, in the next subsection.

3.4. Perron-Frobenius and description of extremals

We now describe the principal eigencones in nonnegative linear algebra and then in max
algebra. By means of Proposition 2.3.1, this description can be obviously extended to the
general case. As in Section 2.3., both descriptions are essentially known: see [16,26,27,45|.

We emphasize that the vectors £ and z(® appearing below are full-size.

Theorem 3.4.1. Frobenius-Victory [45, Th. 3.7 Let A € RY™ have pt(A) =1.

(i) Each spectral class p with p, =1 corresponds to an eigenvector W whose support
consists of all indices in the classes that have access to v, and all vectors x of Vi (A, 1)
with suppz = suppz™ are multiples of =" .

(ii) Vi(A,1) is generated by ") of (i), for u ranging over all spectral classes with Py =
1.

(iii) =" of (i) are evtremals of V,(A,1). (Moreover, ") are linearly independent.)

Note that the extremality and the usual linear independence of ™ (involving linear
combinations with possibly negative coefficients) can be deduced from the description of
supports in part (i), and from the fact that in nonnegative algebra, spectral classes associated
with the same p do not access each other. This linear independence also means that V, (A, 1)
is a simplicial cone. See also [45, Th. 4.1].

Theorem 3.4.2. [16, Th. 4.3.5] [50, Th. 2.8] Let A € R} have p®(A) =1.
(i) Each component [i of C(A) corresponds to an eigenvector x'*) defined as one of the
columns A¥ with © € Ny, all columns with i € N being multiples of each other.
(ii) Va(A,1) is generated by ™) of (i), for i ranging over all components of C(A) .
(iii) 2% of (i) are extremals in Vg (A, 1). (Moreover, ) are strongly linearly indepen-
dent in the sense of [15].)
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Using this description of extremals we can now describe extremals of the core, since we
know that core(A) = V*(A*) in both algebras, that the spectral classes of A°* are derived
from those of A, and that the access relations between classes of A% are similar to those
between the classes of A (see Subsect. 2.4.).

Lemma 3.4.1. For each k > 1, the set of extremals of V=(AF) is the union of the sets
of extremals of V(AF, p*) for p € A(A).

The following result describes extremals of the core in nonnegative algebra. It is not new
(see the quotation). A vector y € R is called normalized if max;y; = 1 (but any other
norm could be used as well).

Theorem 3.4.3. [52, Theorem 4.7], [19]. Let A € R}™.
(i) The set of extremals of core, (A) is the union of the sets of extremals of V,(A*7, p%)

forall pe AL (A), with o =0,.

(ii) Each spectral class p with cyclicity o, corresponds to a set of distinct o, normalized
extremals of corey(A), such that there exists an index in their support that belongs to
1, and each index in their support has access to i .

(iii) Fach set of extremals described in (ii) forms a simple cycle under the action of A.

(iv) There are no normalized extremals other than those described in (ii). The total number
of normalized extremals equals the sum of cyclicities of all spectral classes of A.

In [19] we obtained a similar description of extremals of the max-algebraic core.

Theorem 3.4.4. [19]. Let A e R},

(i) The set of extremals of coreq(A) is the union of the sets of extremals of Vg (A®7, p7)
for all pe A(A), with 0 =0,.

(ii) Each critical component [ with cyclicity o dssociated with some p € Ag(A)
corresponds to a set of distinct o normalized extremals x of coreg(A), which are
(normalized) columns of (A,%7°)* with indices in Nj .

(iii) Fach set of extremals described in (ii) forms a simple cycle under the action of A.

(iv) There are no normalized extremals other than those described in (ii). The total number
of normalized extremals equals the sum of cyclicities of all critical components of A.

3.5. Ultimate periodicity and finite stabilization

In max algebra there are wide classes of matrices A € R7*" where we have
span (A®") = coreg(A)

for all big enough ¢. This is called the finite stabilization of the core. We list some special
cases where this takes place.
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e S; : Irreducible matrices.

e S, : Ultimately periodic matrices. This is when we have A®(+9) = p7A®t for
all sufficiently large t, with p®(A). As shown in [43], this happens if and only if the
Perron roots of all nontrivial classes of A equal p®(A).

e S; : Robust matrices. For any nonzero vector z € R the orbit {A®'z},>; hits
an eigenvector of A, implying that the whole remaining part of the orbit consists of
multiples of that eigenvector. The notion of robustness was introduced and studied
in [17].

e S, : Orbit periodic matrices: For any nonzero vector « € R’} the orbit {A®'®x}>4
hits an eigenvector of A®?  implying that the remaining part of the orbit is periodic
with some growth rate. See [49], Section 7 for characterization.

e S5 : Column periodic matrices. This is when for any ¢ = 1,...,n we have
(A®EF)) ;= p? A% for all large enough ¢ and some p; .

Observe that S € S € 8, C S5 and S3 C Sy (see, e.g., [19], Section 4). To see that
spang (A®") = coreg(A) for all large enough ¢ in all these cases, observe that in the column
periodic case ( Sy ) all sequences of columns end up with periodically repeating eigenvectors
of A®? which implies that spang(A®") C coreg(A) for all large enough ¢, and hence also
spang (A®") = coreg(A) . So finite stabilization of the core occurs in all these classes.

A necessary and sufficient condition for the finite stabilization can be formulated as
follows.

Theorem 3.5.1. [20]. Finite stabilization of coreg(A) occurs if and only if all nontrivial
classes of A are spectral.

The action of A on its core in max algebra will be studied in more detail in [20].
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