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Abstract. Let G/H be a hyperbolic space over R, C or H, and let K be a maximal
compact subgroup of G. Let D denote a certain explicit invariant differential operator,
such that the non-cuspidal discrete series belong to the kernel of D. For any L?-Schwartz
function f on G/H, we prove that the Abel transform A(Df) of Df is a Schwartz
function. This is an extension of a result established in [2] for K -finite and K N H -invariant
functions.
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Awnnorarus. Ilycrs G/H — runep6osmaeckoe npocrpanctso Hag R, C mmm H, mycrs
K — makcumasibHast koMmmakTaas noarpynna rpynnsl G. Ilycts D obo3nadaeT HEKOTOPBIi
SIBHO BBINUCHIBAEMbIN MuddepeHnna bHbIil Ooneparop — TaKoi, YTO HEKACIUIAJIbHBIE
JIMCKPETHbIE CepUU IIpUHAJJIEXKAT siApy oneparopa D. Mbl qoKasbpiBaeM, 9TO JjIsl BCSIKOI
bynxkmun  f w3 mpocrpanctsa L2 -IIsapma ma G/H mupeobpasosamme AGers A(Df)
dbyukmun Df ects dyukiusa [[lBaprma. 1o — pacmmpenue pesysabTara, yCTAHOBICHHOTO
B [2] nist K -bunntHbx n1 K N H -uHBApUAHTHBIX DYHKIHUIA.
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KitoueBbie ciioBa: rurepOoIMdIecKe I[POCTPAHCTBa;  Ipeobpas3oBanme Pajiona;
KaCIuJIaJIbHbIe JIUCKPETHBIE cepun; peobpasoBanue AGejis

s nurupoBaHUs: Andepcen  H.B.,  ®aencmed-Hencenn M. Acumurornka
npeobpasoBanust Pajona Ha runepbonaudeckux mpocrpancrBax // Becrnuk poccuiickux
yuusepcureroB. Maremaruka. 2019. T. 24. Ne 127. C. 241-251. DOI 10.20310/2686-9667-
2019-24-127-241-251. (In Engl., Abstr. in Russian)

§ 1. Introduction

The Radon transform R on the hyperbolic spaces G/H,

Rf= | f(nH)dn,
N+

where N* C GG is a certain unipotent subgroup, and the associated Abel transform A, were
introduced and studied in [1] and [2]. Generalizing Harish-Chandra’s notion of cusp forms
for real semisimple Lie groups, a discrete series is said to be cuspidal if it is annihilated by
the Radon transform. In contrast with the Lie group case, however, non-cuspidal discrete
series exist. For the projective hyperbolic spaces, these are precisely the spherical discrete
series, but for some real non-projective hyperbolic spaces, there also exist non-spherical
non-cuspidal discrete series.

Let C*(G/H) denote the space of L?-Schwartz functions on G//H. Except for some boun-
dary cases, A maps C*(G/H) into Schwartz functions in the absence of non-cuspidal discrete
series. On the other hand, Af can be explicitly calculated for functions f belonging to the
non-cuspidal discrete series. To complete the picture, we prove below that A essentially maps
the orthocomplement in C?*(G/H) of the non-cuspidal discrete series into Schwartz functions.
To be more precise, let A, = A+p§, where A denotes the Laplace-Beltrami operator on
G/H, and consider the G-invariant differential operator D = A (A, — X2)... (A, — \2),
where Aj,...,\. are the parameters of the non-cuspidal discrete series. Then A(Df) is
a Schwartz function. This extends our previous result, |2, Theorem 6.1], valid only for the
dense G -invariant subspace of C*(G/H) generated by the K -irreducible (KN H)-invariant
functions, to all Schwartz functions.

In [2] we also considered the exceptional case corresponding to the Cayley numbers O.
We expect our new result to hold for this case as well, but we have not been through the
rather cumbersome details.

The second author wants to thank Professor Vladimir Molchanov for the invitation to
visit Tambov University, where our results were first reported, in October 2012. We would
also like to thank Henrik Schlichtkrull and Job Kuit for helpful discussions and comments.
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§ 2. The Radon transform

In this section, we define the Radon transform and the Abel transform for the projective
hyperbolic spaces over the classical fields F = R,C and H. We have tried to keep the
presentation and notation to a minimum, see [1| and [2] for further details (including results
and proofs).

Let = +— T be the standard (anti-) involution of F. Let p > 0, ¢ > 1 be two integers,
and consider the Hermitian form [-,-] on FPT7™2 given by

[yl =2y +.. .+ Tpt1Ypr1 = Tp42Ypro2 = - = Tpltqt1Yppitqtt s

where z,y € FPT92, Let G =U(p+1,q+1;F) denote the group of (p+q+2) x (p+q+2)
matrices over F preserving [-, -]. Thus U (p+1, ¢+1;R) = O(p+1,q¢+1), U (p+1,¢+1;C) =
U(p+1,q+1) and U(p+1,q+ 1;H) = Sp(p + 1,¢ + 1) in standard notation. Put
U(p;F) = U(p,0;F), and let K = U(p+ 1;F) x U(q + 1;F) be the maximal compact
subgroup of G fixed by the Cartan involution on G.

Let 2o = (0,...,0,1)T, where superscript T indicates transpose. Let H be the subgroup
U(p+1,¢;F)x U(1;F) of G stabilizing the line F-zy in FPT4+2. The reductive symmetric
space G/H can be identified with the projective hyperbolic space X =X(p+ 1,9+ 1;F),

X={zcFrtit2 . [z 2] = -1}/ ~,

where ~ is the equivalence relation z ~ zu, u € F*.
Let X;, for t € R, denote the following element in the Lie algebra g of G':

0O 0 ... 0 1
0O 0 ... 0 O
Xe=| oo oo oo
0O 0 ... 0 O
1 0 ... 0 O

(a matrix of order p+ ¢+ 2). Let a, denote the Abelian subalgebra given by X;, t € R,
let a, = exp(X;) denote the exponential of X;, and also define A, = exp(ay).
Let (considered as row vectors)

u=(u,...,up) €F’ and v=(vy...,v1)€F

and let w € ImF (i. e., w=0 for F=R). Define N,,, € g as the matrix given by

—-w u v w
N —u’ 0 0 u"
e et o0 0 =0T
—-w u v w
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Then |
exp<Nu,v,w) =1+ Nu,v,w + 5 : Ng,v,w >
and a small calculation yields that
Qy exp<Nu,v,w) * Xy =

1
= <sinht + 5 e (Jul® — |v*) + et w, u;

1 T
-7, cosht+§ et (Jul® — |v|2)+etw> ) (1)
for any t € R.
Define the nilpotent subalgebra n* as follows, for p > ¢,
= {Nypw:u=(—0v",u),veF, v eFr?} (2)
and, for p < g,
= {Nypw:v=(—u"v), ueF’ v eFIP} (3)

where u”,v" means that the order of the indices is reversed. By abuse of notation, we leave
out the superscript " in what follows.
We finally also define the following p-factors. Let d= dimgrF, and let

pq =(1/2)(dp+dg+2(d—1)) € R, py=(1/2)(|dp —dg| +2(d - 1)) € R.

Let N* = exp(n*) denote the nilpotent subgroup generated by n*. For functions f on
G/H, we define, assuming convergence,

Rf(g)= [ f(gn"H)dn™ (g€ G). (4)

N+

Let f € C*(G/H), the space of L?-Schwartz functions on G/H. From [1] and [2], we
know that the Radon transform Rf is a smooth function. Also, the integral defining R
converges uniformly on compact sets, and R is G- and g-equivariant.

We define the associated Abel transform A by Af(a) = a” Rf(a), for a € A;. We
are mainly interested in the values of Rf and Af on the elements a,, and thus define
Rf(s) = Rf(as), and, similarly, Af(s) = Af(as), for s € R. Let A denote the Laplace-
Beltrami operator on G/H. Then, for f € C*(G/H),

2

Aaf = (G5-R)Af (e 6

Finally, for R > 0, let C%(G/H) denote the subspace of smooth functions on G/H
with support in the ( K -invariant) ‘ball’ {kas - x¢ | |s|] < R} of radius R. Similarly, let
C%(R) denote the subspace of smooth functions on R with support in [-R, R], and let
S(R) denote the Schwartz space on R.
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§ 3. The discrete series and the Abel transform

Let ¢ > 1, or d > 1. The discrete series for the projective hyperbolic spaces can then
be parametrized as

1

(dg—dp) — 1+ pux>0, py € 2Z},
see [1] and [2]. The spherical discrete series are given by the parameters A for which uy <0,
including the ’exceptional’ discrete series corresponding to A > 0 for which u, < 0.

For ¢ = d = 1, the discrete series is parameterized by A € R\{0} such that |A\|+p, € 2Z,
and there are no spherical discrete series.

The parameters A are, via the formula Af = (\? — pg) f, related to the eigenvalues of
A acting on functions f in the corresponding representation space in L*(G/H).

Let D be the G -invariant differential operator A,(A,—A7)...(A,—)2), where A1, ..., \,
are the parameters of the non-cuspidal discrete series, and A, = A + pﬁ.

We have a complete classification of the cuspidal and non-cuspidal discrete series for the
projective hyperbolic spaces, also including information about the asymptotics of the Radon
and Abel transforms:

Theorem 1. Let G/H be a projective hyperbolic space over R, C, H, with p > 0,

(i) If d(q —p) < 2, then all discrete series are cuspidal.

(ii) If d(q— p) > 2, then non-cuspidal discrete series exists, given by the parameters
A > 0 with py < 0. More precisely, if 0 # f € C*(G/H) belongs to Ty, then
Af(s) = Ce*, with C #0.

(iii) T is non-cuspidal if and only if Ty is spherical.

(iv) If p=q, and f € CX(G/H), for R>0, then Af € CX(R).
(v) If dig—p) <1, and f € CX(G/H), then Af € S(R).

(vi) Assume d(g—p) > 1. Then A(Df) € S(R), for f € C*G/H).

The above theorem is almost identical to [2, Theorem 6.1|, except for item (vi), which was
only proved for functions in the (dense) G -invariant subspace V of C*(G/H) generated by
the K -irreducible (K N H)-invariant functions. Additionally, |2, Theorem 6.1] furthermore
included the exceptional case corresponding to the Cayley numbers Q.

Theorem 1 (including the reformulation of (vi)) also holds for the real non-projective
spaces SO (p+1,¢+ 1)./SO (p + 1,q)., except for item (iii), due to the existence of non-
cuspidal non-spherical discrete series corresponding to negative and odd values of u, in the
exceptional series, see [1, Section 5.
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The conditions in (vi) essentially state that Af is a Schwartz function if f is perpen-
dicular to all non-cuspidal discrete series. The factor A,, however, seems to be necessary
(except in the real case with ¢ —p odd), even for the case d(q — p) = 2, where there are no
non-cuspidal discrete series.

In the next section, we prove Theorem 1(vi).

§ 4. Proof of Theorem 1(vi)

First we note, following [2, Section 10|, that the Schwartz decay conditions are satisfied
near —oo for A(f), and thus also for A(Df). This leaves us to study the Abel transform
near +o0.

Let f € C*(G/H), and write f[z] = f(gH), where z = g-zy. From (1) and (3), we get

Rf(s) = /N flasn*H)dn*

— / f[(sinh s — 1/2¢*|v'|* + e*w, u;
Rdg—dp x Rdp x Rd—1

—u, —v',cosh s — 1/2e°[v'|* + e*w)] dv’ du dw.

Let v/ = [v/|v, v = —sinhs+ 1/2e*|v/|?, such that [v/|? =1+ 2e %v —e 2%, and W = e*w.
Then,
Rf(s) =e™% / d@/f (W — v, u; —u, —(1+2e v — e )G e — + )] X
—sinhs M

X (14 2e %0 — e 2)da=d)/2=1 gy, 47 du

where M = S%—dr=1 x R% x R4~! and S" is the unit sphere in R".
We will use the identification of X = X(p +1,¢+ 1;F) with

X ={z € FPH2: [z 2] < 0}/ ~,

and identify a function f on X with a homogeneous function of z of degree zero on
{z e FPrat2: [z, 2] < 0}.
We now identify FP+9+2 with R4P*+4+2)  such that the coordinates satisfy Re z; = 24,

for y=1,...,p4+q+ 2. Consider the real hyperbolic space
X ={z e P92 [z, 2] = —1}.

The group G = O(d(p + 1),d(q + 1)) acts transitively on X. Let K denote the standard
maximal compact subgroup O(d(p + 1)) x O(d(q+ 1)) of G. Let U(E), respectively U(E),
denote the universal enveloping algebra of the Lie algebra tof K , respectively of the Lie
algebra ¢ of K.
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Lemma 1. Let U € U(¥), then U maps C*(G/H) into itself.

Proof. The lemma is obvious for d = 1. So assume d > 1. We note that any element
2z € X can be written as z = ka - xg, where k € K, and a = a,, s > 0. Let H =
O(d(p+1),d(g+ 1) — 1), and let m denote the commutator of A, in the Lie algebra of
KN H. Then =& +m.

Let Uy, = Ad(k)U, for k € K, then Uf = (Ad(k~')U;)f. By the Campbell-Baker-
Hausdorff formula, there exists an element U € U(£), such that Uy = U modulo the left
ideal generated by m. This implies that

Uflka - o) = (Ad (K~HUR) f[ka - x0).

The map k — Ad(k~')U} is continuous into a finite dimensional subspace of U(), and
we can write Uflka - zo) = (Ad (k™HUD) flka - zo] = Siu;(k)U; flka - xo), for a finite set of
elements U; € U(€) and continuous coefficients u;(k). It follows that U f isin C*(G/H). O

Define for t = (t1,t5,13) € R3, the auxiliary function
Gﬂm,m¢9:=/“fKW+thurﬂuw@¢3+ﬂmc%dumn
M

and, with the identification 2z = e=*, define the function F(z) = e®Rf(s). Then, since
sinhs = —(z — 271)/2, we get
F(z)= / Gy (—v,—(1+ 220 — Y2 4 — v) (14 2zv— LA da=dp)/2=1 gy, ()
(z—z—1)/2

Lemma 2. The function G is homogeneous of degree dp+d —1 on the cone t —
5 —t3 <0, it is even in ta, and satisfies Gy(—t1,t2, —t3) = Gy(t1,ta, t3).

Let X be the differential operator on R?® given by t30/0ty — t20/0ts. For all f €
C*(G/H), and all k, N € N, there exists a constant C, such that

[XEG ()] < C(#5 + £) 7P+ log (5 + )™,
on the hyperboloid 3 — t3 — t3 = —1.

Proof. The first statement follows from the homogeneity of f and the definition of Gj.

As before we identify FP+9+2 with RYPTa+2) For § = d(1+2p)+1,...,d(1+p+q), we
define the differential operator

0 ' 0

Diflx] = xd(p+q+2)a_xf[x] -

xi— flx].
i 8xd(p+q+2)

This operator is defined by the left action of an element 7; in O(d(q + 1)) (with value
1 in the last entry of the i’th row, value —1 in the last entry of the i’th column, and 0
otherwise), and Lemma 1 thus gives that D; maps C*(G/H) into itself.
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Let now U = (Va(1+2p)+1, - - - » Vd(14p+q)) € S#a=P)=1 The operator

1+p+q
E viDh

i=2+2p

also maps C?(G/H) into itself, and
|V /]| < d(q — p) max(| Dif[z]]).

Applying the operator X to the integrand in the definition of G, we get

X fltr, u; —u, to0, ts] = t5 » %f{]vz - t2LfH

é)ﬂfd(erqH)

:t?’zﬁiif —t2ZU

= Yif[tla u; —u, tQ'U, t3]

1
aﬂ?d p+q+2

the summations are taken over i = d(1 +2p) +1,...,d(1+p+ q). The inequality for X*f
follows from repeated use of this formula and from the asymptotic estimates of functions in

C2(G/H). 0

In particular, it follows that the function v — X*G;(—v, —1, —v) has the same parity
as k.

Lemma 3. Let ko be the largest integer such that ko < (dg — dp)/2, and let € =
(dq — dp)/2 — ko. Define t = t(z,v) = (—v, —(1 + 2zv — 22)'/2, 2 —v). Then

(i) For k < ko, the function

ok o
ok (Gf(t(z’ v))|(1 4 220 — 22)‘(‘1‘1 dp) /2 1)

is uniformly integrable over R for z < 1.
(i) For k < ko odd, this function is an odd function of v for z =0.

Proof. Notice that 2 —2 —t2 = —1 and ¢3+12 = 1+v? for t ={(z,v), and that the
integral (6) is uniformly convergent for 0 < z < k < oo. The same holds with G ¢ replaced
by XkGf

Repeated use of the formula

;ZGf( t(z,0))(1 + 220 — 22)% = — XG(t(2,0))(1 + 220 — 2%)>71/2

+2aG(t(z,0)) (1 + 220 — 22)* (2 — )

yields (i), and together with the parity properties of X*G, also gives (ii). U
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We notice that e =1 if d(q—p) is even, and e = 1/2 if d(q—p) isodd, i.e., if d=1
and ¢ — p is odd.

For k < kg, the derivatives 9%/0z% of G(t(z,v))(1 + 2zv — 22)(da=4P)/2=L are zero at
v = —sinhs = (2 — 271)/2, whence the integrand is at least ko times differentiable near
z =0, and we can compute the derivatives d*/dz*F(z) by differentiating under the integral
sign in (6).

If ko > 0, we can use Taylors formula to express F'(z) as a polynomial of degree ko — 1,
plus a remainder term involving d* /dz" F(£), for some 0 < £(2) < z,

F(2) = co+c12 + 2% 4 ..+ 1271 + Ry, (€)2™,

where 0 < £ < z, and

1 [ &
cj —

Tl dzi (Gy(t(z,0))(1 + 220 — 22)(dq*dp)/2fl) dv,
3 ) dz

z=0

for 5 €{0,...,ky — 1}. The remainder term is given by:

1 [~ dr
R -
ko(g) k0| \/(551)/2 deO

(Gy(t(z,v))(1 + 220 — 22)(dQ—dp)/2—1) dv.
2=¢

Consider Af(s) = e”*Rf(s) = z~"=9 F(z), which is equal to
coz P g imdm) o mlmd=) e 2T 4 DR (6).

Here we have used that p;—d = d(q—p)/2—1. For j even, the exponents —d(q—p)/2—1—7,
for j € {0,...,ky—1}, correspond to the parameters Aq,...,\, for the non-cuspidal discrete
series, and ¢; = 0 for j odd, since the integrand is an odd function.

For the real non-projective hyperbolic spaces the condition concerning the parity j does
not hold, but in that case all the exponents —d(q—p)/2—1—j, for j€{0,..., ko —1},
correspond to parameters A, ..., A, for the non-cuspidal discrete series, see [1, Section 3].

From the definition of the differential operator D and (5), we see that A(Df) at most has
a contribution from the remainder term, and further that A(Df) does not have a constant
term at oo, due to the term d?/ds®. If € = 1/2, the remainder term e V2R (£(s)) is
clearly rapidly decreasing, and we are thus left to consider the case ¢ = 1, in which case
ko=d(qg—p)/2—1.

Consider the constant term C Ry, = limg_, o Ry, (e~%), which could be non-zero. We want
to show that Ry, (§) —CRr,, is rapidly decreasing at +o00, where { = {(s), with 0 <& <e™*.
We also include the case ky =0, where we put & = e,

Define

d*o
T dzho

H(z,v) (G4(t(z,0)(1 + 220 — 2%)F).
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Then, for £ < z < 1,

0 (6=¢71)/2
Ry, (§) — Cry, = / (H(&v) — H(0,v))dv + / H(0,v)dv = L,(§) + 12(¢).
(e~€-1)/2 =

For I,(¢), there exists & = & (&, v) <&, such that

H(z,v),
z=81

and we get:

d

H(E.0) = HO.0) =€
= H(z,v)

ne <z [ .

By Lemma 3, the integrand is uniformly integrable for z < 1, and we conclude that I;(&)
is bounded by Ce™*.
For s large, the function H(0,v) is for every N € N bounded by

|H(0,v)] < C(1 +v?)~Ma=P/4y ko log(1 + )7,

for some positive constant C. Using this, we find that

L(2) < C/ v (log(v)) N dv = C(N — 1)~ (log(sinh s)) ¥+ < Cs™ T,
sinh s
It follows that Ry,(§) — Cr,, is rapidly decreasing at +oo, whence A(Df) is rapidly
decreasing at 400, which finishes the proof of Theorem 1.
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