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CymiecTBoBaHEe U YCTOWYMBOCTD IIE€PUOIUIECKUX PerIeHuid
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Awnnoranus. B crarbe n3y4yarTcs CyIIeCTBOBAHNE U YCTONYNBOCTD CTAIMOHAPHBIX [IEPUOIUIE-
CKUX PEIeHni MOJIEJI HEHPOHHOTO TT0JIsT, & UMEHHO HHTETrPATHHO- T dEPEeHITHATLHOTO YpaBHe-
uus tura [ammeprrreiina. [lonarast, aro dyHKIMsS akTHBAIMYE — CTyIeHIaTast (QyHKIUS, a PO
oneparopa — ObICTpOyOBIBatoIas (PyHKIMsI, Mbl (DOPMYJIUPYEM HEOOXOJUMBIE U JOCTATOYHBIE
YCJIOBUSI CYIIIECTBOBAHUSI 0COBOTO KJlacca perennii — 1 -6amMIoBbie (BBITYKJIbIE) EPHONIECKIE
perernst. /lamee Mbl n3ydaeM yCTONIMBOCTD ITUX PEIIEHUI ¢ IOMOINBIO CIIEKTPA ITPOU3BOIIHOMN
®perrie cooTBeTCTBYOMIErO oneparopa ['ammepireiina. Mbl T0Ka3bIBa€M, UTO ITOT CIIEKTP CO-
IJIACYeTCs C TOYHOCTDHIO JI0 HYJIsI CO CIeKTpoM Osiounoro omnepatopa Jlopana. Takxke moka3biBa-
€M, 9TO HEHYJIEBOU CIEKTP COCTOUT TOJBKO U3 COOCTBEHHBIX 3HAUEHU, U TIOJydIaeM aHAJTUTHIE-
CKHUe BBIPaXKEHUs KaK JJIsi COOCTBEHHBIX 3HAYEHWI, TaK U JJisi COOCTBEHHBIX (dyHKImit. Kpome
TOI'O B CTATHE PACCMOTPEHBI IIPUMEPHI.

KittoueBsbie cjioBa: He/IMHEWHBIE HHTEIPAJIbHBIE YPABHEHUsI, CATMOUBHIHAST (DYHKIIUAST AKTUBa~
IUU, MOJIEJIb HEITPOHHOTO I10JIs, IepUOIMYecKne pelleHus, 61o4nble oneparopsl Jlopana

BuaaromapuocTu: Pabora Boinosinena mpu nojjepkke HopBeKCKOro yHUBEPCUTETa €CTECTBEH-
HBIX HAYK U HCcienoBaTesbekoro coera Hopsernu (mpoext Ne 239070).

nsa muruposanus: Koaoduna K., Kocmpukun B., Oaetinux A. CyliecTBoBaHHe U yCTOWYM-
BOCTD I[IEPUOJINYECKUX DelleHuii ypaBHeHus Hefiponnoro nosis // BecrHuk poccuiickux yHUBEp-
cureroB. Maremaruka. 2021. T. 26. Ne 135. C. 271-295. DOI 10.20310/2686-9667-2021-26-135-
271-295. (In Engl., Abstr. in Russian)
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Introduction

The behavior of a single layer of neurons can be modeled by a nonlinear integro-differential
equation of the Hammerstein type,

Gyt t) = —u(e.0) + [ o =) f(uly.t) = Ry (0.
Here u(x,t) and f(u(x,t) — h) represent the averaged local activity and the firing rate of
neurons at the position x € R and time ¢ > 0, respectively. The parameter h € R denotes the
threshold of firing and w(x — y) describes a coupling between neurons at positions z and y.

The model (0.1) belongs to a special class of models, so called neural field models, where the
neural tissue is treated as a continuous structure, and is often referred to as the Amari model.
Since the original paper by Amari [1], this model has been studied in numerous mathematical
papers, for a review see, e. g., [2,3| and [4]. In particular, the global existence and uniqueness
of solutions to the initial value problem for (0.1) under rather mild assumptions on f and w
has been proven in [5].

In [1] Amari studied pattern formation in (0.1) for a model under the simplifying assumption
that f is the unit step function H, and w is of the “lateral-inhibitory type”, i. e., continuous,
integrable and even, with w(0) > 0 and having exactly one positive zero. In particular, he
analyzed the existence and stability of stationary localized solutions, or so called 1-bump
solutions, of the fixed point problem

+o0

u(z) = (Hu)(x), (Hu)(z) =/ w(z —y)f(uly) — h)dy. (0.2)

o)

The equations (0.1) and (0.2) have been studied with respect to various combinations of
firing rate functions and connectivity functions, see [2,4,6]. Common examples of w are the
exponentially decaying function,

w(x) = Se™ll S s>0, (0.3)
the so-called wizard-hat function,
w(z) = Syl — goem2ll g5 6 >0, s > 80 >0, (0.4)
and the periodically modulated function
w(z) = e (bsin(|z])) 4 cos(z)), b>0, (0.5)
see Pic. 1. In the paper we impose the following assumptions on w.
Assumption A. The connectivity function w satisfies the following conditions.
(1) w(z)=w(-z)
(ii) w(r) =0 as |x| = oo and |w(x)| < C(1+ |x])~1%, O, = const > 0.
(iii) w e Cy'(R) N Ly(R).

(W) [pw(x)de =: hy > 0.
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One can easily check that the functions in (0.3)—(0.5) satisfy Assumption A and decrease
exponentially fast as |z| — 0.
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Picture 1. Connectivity functions w(x) given by (0.3) with S = 0.5, s =1 (blue curve), (0.4) with
S1 =4, s1 =2, So=15, s9 =1 (red curve), and (0.5) with b = 0.5 (green curve).

The firing rate function f : R — [0,1] is usually given as a smooth function of sigmoid
shape. It is often represented by a parameterized function f(u) = S(fu), see e. g. [7-10] where
S(Bu) approaches (in some specific way) the unit step function H(u) as 5 — oo. One example

of f(u) is

flu)=5(Bu), S)=_———HW), p>1, (0.6)
see Pic. 2.
! | Y
08" I(
06"
0.4+
02t
%1 05 0 05 1

u

Picture 2. Functions f(u) = S(fu), S isasin (0.6), p =2, with =100 (red curve) and S = 20
(blue curve) and the unit step function H (u) (black dashed line).

Already in his seminal paper Amari conjectured that there must exist periodic stationary
solutions in the absence of bump solutions and constant solutions. He however did not pursue a
further study of periodic solutions. Of course the absence of other types of stationary solutions
is not necessary for periodic solutions to exist. In fact, as in some cases bump solutions can
be viewed as a homoclinic orbits of an ordinary differential equation (ODE) with w being the
Green’s function of its linear part, see e. g. [11], periodic solutions are very likely to co-exist
with the bump solution, see [12,13] (in Russian) and [14], and [15]. In [3,16,17] it has been
shown numerically that stable periodic solutions of the two population version of the Amari
model exist and emerge from homogeneous solutions via Turing-Hopf bifurcation. To the best
of our knowledge there are no theoretical studies that address the existence of periodic solutions
to (0.1) except [8], and no studies on the stability of these solutions.
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Krisner in [8] studied the existence of periodic solutions to (0.1) with w given by (0.5). In
this case, any bounded solution of (0.2) is a solution of a forth order ODE, see [18] and can
be studied by methods developed for ODEs. Given f as a smooth steep sigmoid function it
has been shown that (0.1) has at least two periodic solution under some assumptions on the
parameters. The analysis is however rather cumbersome and is not applicable for general types
of w as, e. g., (0.3) and (0.4). Thus, we would like to proceed in a different way and address
the existence of periodic solutions without reformulating (0.2) as ODEs.

When f is approximated by a step function H it is possible to obtain analytical expressions
for some types of stationary solutions and travelling waves, see e. g. chapter 3 in [4] and [19].
However, the operator H in this case is discontinuous in any classical functional space and
thus, classical functional analysis tools such as e. g. generalized Picard-Lindelof theorem or
Hartman-Grobman theorem, usually fail. However, many papers still conveniently assume that
the model is well-posed on the considered spaces and study the stability of solutions by first
approximation, see [1,19,20] and [21] just to name a few.

The natural way to overcome this problem is to study the model (0.1) with f(u) = S(fu)
and only use the limiting case f = H to gain the knowledge about the existence and stability
of solutions for large values of 5. The approximation of f = H with f = S(fu) then must
be properly justified. This has been successfully done for bumps solutions in [10,22] and [23].

Our overall aim is to generalize the analysis in the mentioned papers for the periodic 1-
bump solutions. In this paper we take the first crucial step towards this direction and study
the limiting case f = H.

The paper organized as follows: First we introduce the notation we use. In Section 1 we
give the definition of 1-bump periodic solutions and study their existence by means of the
Amari approach. We formulate necessary and sufficient conditions for the existence of 1-bump
periodic solutions and show that for w > 0 there is a unique solution for each period 7" > 0.
Section 2 is dedicated to the linear stability of 1-bump periodic solutions. We show that the
spectrum of the corresponding linearized operator H can be obtained as the spectrum of an
infinite block Laurent (or bi-infinite block Toeplitz) operator. We give an analytical expression
for the spectrum in terms of the symbol of the Laurent operator and discuss ways how it can
be calculated numerically. We prove that the spectrum consists only of eigenvalues and give a
formula for calculating eigenfunctions. The results in Section 1 and Section 2 are illustrated
for the case of w given by (0.3) and (0.4). Finally, we make conclusions and discus future
perspectives.

Notations
For the convenience of the readers we give a list of functional spaces and specify other
notations we use.
e S' is the unit circle.
e i is the imaginary unit.
e 7 is the complex conjugate of z € C.
e cl(Q) is the closure of a set €.

| - |lop denotes the operator norm.

C’l? ’1(R) is the space of all Lipschitz continuous bounded functions on R equipped with
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the norm @) — )]
x) = fly

fll 01 m = sup ——————, x #y.

|| ”Cb R) 2.yeR |JJ . y|

e ('(Z) is the Banach space of sequences with entries from R™ where 1 < p < oo and
m € N equipped with the norm

1/p
1] z) = (Z kaHp> , 1<p<oo

kEZ

and

HSUHEgg(Z) =sup ||lzi||, p= o0,
kez

where || - || is any norm in R™.
o (*™(Z) is the space of sequences where components are matrices m by m on R,
equipped with the norm

1/p
[All g 7y = (Z ||Ak’||1;p) , 1<p<oo

kcZ
and

[All gz (zy = sup | Akllop, P = 00
kEZ

e W(S") is the Wiener space of functions defined on S' (continuous functions whose
Fourier coefficients is an ¢1(Z) sequence) equipped with the norm

1w = laxl,

keZ

where a; are the Fourier coefficients of f.
o WmXm(S1) is the Wiener space of m by m matrix functions defined on S' equipped
with the norm

[llop = @E%};Z [islIw-
j=1

e o(L) is the spectrum of the linear operator L.

e p(L) is the resolvent of the linear operator L.

1. Existence of 1-bump periodic solutions

We consider a particular type of periodic solution that we call a 1-bump periodic solution,
due to its shape on one considered period, that is, u(x) > h on a (connected) interval and
u(z) < h otherwise. Krisner in [8] proved the existence of the same type of periodic solutions
for w given in (0.5). Below we define the class of periodic functions that we intent to consider.

Definition 1.1. Let h € R, and u(xz) be a continuous periodic function defined
on R with a period T > 0. We say that u(z) is a 1-bump periodic function with period T,
or simply 1-bump periodic, if there is a translation of u(z), say p(z) = u(x — ¢), with the
following properties:
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(i) It has two symmetric intersection, say at = = ta with the straight line y = h, i. e.,
p(xa) = h.

(ii) It lies above y = h for all = € (—a,a) and below for « € [-T7/2,T/2]\ [—a,a], i. e.,
p(x) > h for z € (—a,a) and p(x) < h for x € [-T/2,T/2]\ [—a,a].

If in addition v € C}(R) with p’(+a) # 0 then we say that u(z) is regular.

We illustrate the definition above in Pic. 3.

) A

05 F == o= S=x = = = mE [ = -

-0.5

Picture 3. The function corresponding to the blue curve is the regular 1-bump periodic if h = 0.5

and is not a 1-bump periodic if h = 1. The red curve corresponds to the 1-bump periodic function

for both h = 0.5 and h = 1. Here we assume that the functions given by blue and red curves both
have period T = 1.

A small perturbation of a regular 1-bump periodic function in C;*'(R) does not destroy the
1-bump structure of the function. We formulate it as the lemma below.

Lemma 1.1. Let h € R and T > 0 be fized and p(x) be a reqular 1-bump periodic function
with p(£a) = h, 0 < a < T/2. Then there exists € > 0 such that any v € B.(u,) := {v] :
lv — upl|con < e} has exactly two intersection with the straight line y = h on each of the
intervals (=T/2+ kT, T/2+ kT), k € Z, i. e., there are ay(e, k) € (=T/2+ kT, T/2+ kT)
such that v(ax(e, k)) = h. Moreover as(e, k) — +a + kT as ¢ — 0 and v(x) > h for
z € (a_(e,k),ay(e, k) and v(x) < h for v € [-T/2+ kT, T/2+ kT]\ (a_(e, k), ay (e, k)).

P r o o f. The proof goes in line with the proof of Lemma 3.6 in [24].

Definition 1.2. A (regular) 1-bump periodic function which is a solution to (0.2) we
call a (regular) 1-bump periodic solution to (0.1).

We notice that any solution to (0.2) is translation invariant, i. e., if u(x) is a solution to
(0.2) then so is u(z —c¢) for any ¢ € R. Thus, without loss of generality we can simply consider
p(z) = u(z) in (ii) of Definition 1.1.

Given that f is a unit step function, a 1-bump periodic solution can be expressed as

uy(x) = Z /a w(z —y)dy = Z /a w(x —y+Tk)dy (1.1)

kez Y —otkT kez ¥~

where a € (0,7/2) is the root of wu,(a) = h.
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We notice here that the critical cases a = 0 and a = T/2 correspond to the constant
solutions u,(x) = 0 and w,(x) = hy where hg = [, w(y)dy > 0. This serves as a motivation to
consider h € (0, hy). Further we will show that for some connectivity functions the condition
h € (0, hy) is sufficient for the existence of a 1-bump periodic solution.

It is easy to see that the function in (1.1) is periodic. Indeed,

ST+ T) = Z/ (x —y+T(k+1))dy = uy(z).

kEZ

Moreover, due to Assumption A (i), it is even

Z/ x—y—i—Tk:dy—Z/ (—z 4y + Tk)dy

keZ keZ
—Z/ (e~ = Th)dy = uy(a).
keZ
From Assumption A(ii) we obtain the following estimate
max lwx —y+Tk)| < Co, keZ,
€[-T/2,T/2]
Y€ L_a7a]

where

1, k=0
. —
1+ Tlk|—a—T)""°, |k > 1.

Since ) oy, converges, the series > w(z + Tk) converges absolutely and uniformly on
keZ keN
[—a—T/2,a+T/2]. Due to periodicity of this series, it converges absolutely and uniformly on

any bounded interval to an even periodic function
wy(; T) = Zw(x —Tk) (1.2)
kEZ

that has the antiderivative

Wy )= [ et Ty =3 [ty =41 (1.3)

kEZ

Using the notations above we obtain

a

up(z) = /wp(x —y; T)dy (1.4)
or, equivalently,
up(x) =Wyl +a;T) = Wy(z — a;T) (1.5)
where a is then given as
W,(2a;T) = h. (1.6)
Thus, the procedure of finding 1-bump periodic solutions becomes analogous to the one of
finding 1-bump solutions proposed by Amari in [1] where instead of w and W we use w, and
W,, respectively. Namely, first we find @ from (1.6). Then we verify that the function in (1.5)
is indeed a 1-bump periodic function. As the function w, is even and periodic, it is enough to
consider the interval [0,7"/2]. We summarize this in a theorem.
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Theorem 1.1. The function u,(x) giwen by (1.5) is a periodic solution to (0.1) if and only
if the following three conditions hold

(1) uy(a) = h, or equivalently, W,(2a;T) = h, for some 0 <a <T/2,
(2) uy(x) > h forall x € (0,a),
(3) uy(x) < h forall x € (a,T/2].

Similarly as for the bump solutions, it is not generally possible to verify the conditions of
the theorem above without additional information about w. However, for a particular choice
of w the verification procedure is rather simple.

Observe that from (1.5) u, € C}(R). Then we calculate

u(z) =wy(z+a;T) —wy(z —a;T) (1.7)

p

and
(@) = wp(0;T) — wy(2a;T). (18)

Hence, if u, is a 1-bump periodic solution, w,(0;7) > w,(2a;T) must be satisfied. Then for
w > 0 we can simplify conditions of Theorem (1.1).

Lemma 1.2. Let T > 0 be arbitrary and w satisfies Assumption A. Then for any
0 < h < hy the equation uy(a) = h possesses at least one solution a € (0,7/2). If w > 0
and can have only isolated zeros then such a = a(T') is unique and the corresponding u, is a
1-bump regular periodic solution provided that w,(2a(T);T) < w,(0;T).

P roof Since the function W,(x;T) is continuous and W,(0;T) = 0 and W,(T;T) =
ho > 0, there is at least one solution to the equation W,(2a;T) = h with 0 <a < T/2.

Assume now that w > 0 and does not have non isolated zeros. Then W,(z;T) is strictly
monotone increasing on [0,7/2]. Indeed,

iwp(x; T) = wy(;T) =Y wl@+Tk) >0

dx
kcZ

and may have only isolated zeros. This implies the uniqueness of a as a function of 7. The
final statement follows from (1.8) and uniqueness of a. O

For more general function w number of 1-bump periodic solution may vary with the period.
Now let us consider several examples of w, T and h for which the solutions do not exist, exist
and are unique or non-unique.

Example 1.1. We consider two examples of the connectivity functions given in (0.3)
and (0.4) where most of the calculations can be done analytically.
Indeed, for w given by (0.3) we get hg = 25/s,

wy(x; T) = Sy(x mod T s), and W,(x) = % {%J + SU(x mod T s)

where
exp(—sz) + exp(—s(T — x))
1 —exp(—sT)

U(z;s) = (1.9)
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exp(s(x —T')) — exp(—sz) — exp(—sT) + 1

V(z;s) = s(1 — exp(—sT)) |

(1.10)

see Pic. 4(a).

From Lemma 1.2 the equation W,(2a;T) = h, h € (0,hy) possesses a unique solution
0 < a(T) < T/2. Moreover, wy,(0;T) = 25/(1 —exp(—sT')) and w,(2a;T) = (exp(—2sa) +
exp(—s(T—2a)))/(1 —exp(—sT)) and thus, w,(2a;T) < w,(0;T) for any 7" > 0 which implies
that wu,(x) is a 1-bump regular periodic solution, see Pic. 3.
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Picture 4. (a) The function w given in (0.3) with S=0.5, s=1
and the corresponding w, and W, with T" = 4. The intersection point corresponds to a = 0.6633
(rounded up to 4 decimals) and h = 0.4. (b) 1-periodic bump solution (1.5) with W), as in (a).

For w given by (0.4) we find hg = 2(S1/s1 — S2/$2),

wy(x; T) = S19(x mod T'; 51) — Satp(x mod T s9) (1.11)

and 251 282 T
Wy(z;T) = | — — — {—J + S51¥(x mod T'; s1) — So¥(z mod T s9) (1.12)

S1 S9 T

with ¢ and ¥ given as in (1.9)-(1.10), see Pic. 5.
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Picture 5. The function w given by (0.4) with parameters S; =4, s; =2, So =15, s =1
and the corresponding w, and W), see (1.11)-(1.12) with T" = 3.5.

The equation W,(2a;T) = h, h € (0,ho) has one, two, or three solutions depending on 7.
That is for the parameter values S; =4, sg =2, Sy =1.5, s =1 and h = 0.4, it has one
solution for T < T} := 2.4997, two solutions for T = T7 and three solutions for 1" > T}, see
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Pic. 6. The value T} = 2.4997 is obtained numerically and is rounded up to four decimals. It
turns out that all of w, correspond to 1-periodic bump solutions, see Pic. 7, Pic. 8.

8r

—W,(x, 15)
—— W (x, 2.4997) -

W (x, 3.5)
-=--h

Picture 6. The function W), in (1.12) with parameters S; =4, s; =2, Sy =15, sp =1
for different periods T and the fixed threshold value h = 0.4.

Picture 7. (a) 1-bump periodic solutions (1.5) with 7" = 1.5. The intersection point corresponds
to a =0.1619 and h =0.4. (b) 1-bump periodic solutions (1.5) with 7" = 2.4997. The intersection
points correspond to a; = 0.1243, az = 0.8919 and h = 0.4. (All the approximated values are

rounded up to 4 decimals.)

157

Picture 8. (a) 1-bump periodic solutions (1.5) with 7" = 3.5. The intersection points correspond
to a; = 0.1113, ag = 1.0494 and ag = 1.5281, and h =0.4. (b) 1-bump periodic solutions (1.5)
with T = 7. The intersection points correspond to a; = 0.1046, as = 2.2792 and a3 = 3.3036 and
h = 0.4. (All the approximated values are rounded up to 4 decimals.)
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There are parameters S, S, and sq, sy that W,(2a;T) = h have two solutions for h > hy
and some T > 0. For example, for S; = 3, s1 = 2, S = 14, s = 1, and h = 0.25
this situation occurs when 7" > 2.116, see Pic. 9. These solutions correspond to the 1-bump
periodic solutions, see Pic. 10. We however do not aim to study this particular case of the
connectivity function in detail. Thus, we will further restrict our attention to the case h < hy,
see Pic. 6.

—W,(x, 15)
—— W, (x, 2.116) | 4

()

w

Picture 9. The function Wj(z;7T') in (1.12) with parameters S1 =3, s; =2, Sy =14, sp =1,
for different periods T and the fixed threshold value h = 0.25.

Picture 10. (a) 1—bump periodic solution (1.5) with 7" = 2.116. The point of tangency
corresponds to a = 0.2352 and h = 0.25. (b) 1—bump periodic solutions (1.5) with 7"= 3. The
intersection points correspond to a; = 0.1272, as = 0.5288 and h = 0.25. (All the approximated

values are rounded up to 4 decimals.)

2. Stability of 1-bump periodic solutions

In this section we study linear stability of regular 1-bump periodic solutions. We first obtain
the Fréchet derivative of the Hammerstein operator defined in (0.2) and then study its spectrum.

Lemma 2.1. Let h,T > 0 be fized and u, be a I-bump periodic solution of (0.1). The
Fréchet derivative of the operator H : Cy''(R) — Cy (R) at w, exists and is given as

S (ww + a — KT)o(—a+ KT) + w(z — a — KT)o(a + kT)).

[ (a)] 2

(H (up)v) () =
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P roof DuetoLemma 1.1 and periodicity of u, the proof in [10] for bumps can be easily
adopted here. O

We would like to emphasize that the regularity condition on wu,, that is |uj(a)| > 0, is
necessary in order for the Fréchet derivative to exists.

Next we show how the spectrum of the operator H'(u,) relates to the spectrum of a Laurent
block operator, or in some literature, bi-infinite block Toeplitz operator, see e. g. [25] and [26,27].

Let £'(Z) be a Banach space of sequences with entries from R™, see Notations.

The block Laurent operator L : £;'(Z) — (;'(Z) can be represented as an bi-infinite matrix
with constant diagonal elements, that is, L = (A;_;); jez giving

Ay A A,
L= A Ay A . A e R™™, (2.1)
Ay A A

The representation (2.1) means that the action of L is given by
(L <xn)neZ) (Yn)nez » Z Aija;.

For p = 1,00 we have

1Zllop = D 1l Axllop- (2.2)

kEZ

Theorem 2.1. The nonzero spectrum of the operator H'(u,) : Co'(R) — Cp'(R) (see
Lemma 2.1) agrees with that of the Laurent block operator L : (> (Z) — (% (Z) defined by

! W(kT)  w(—2a + kT)
A= ) (w(Qa—l—kT) w(kT) ) (2:3)

Moreover, any eigenfunction v(z) of H'(u,) (if exists) corresponds to the eigenfunction
v = (Vg)kez of L where

vi = (v(—a+ kT),v(a +kT))", keZ,

and for a given eigenfunction v of L that corresponds to a non-zero eigenvalue, we can calculate
the eigenfunction of H'(u,) as

1

v(z) = )\|u( ’Z x—i—a—kT) —|—w(:r;—a—kT)

P roof. First of all we observe that L is a bounded operator on (% (Z) since

@ > (Jw(kT)| + max{|w(+2a + kT)[}) <

kEZ

due to Assumption A. A number X € C is in the resolvent set of the operator H'(u,) if and
only if the equation

H'(up)§ — A =w
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has a solution ¢ for any w, where & and w belong to the complexified C’l? ’I(R). Thus, if A € C
is in the resolvent set of the operator #'(u,), then for any k € Z the system of equations

(H'(up)é)(a+ kT) — N(a+ kT)E = w(a + kT),

(H'(up)€)(—a + kT) — X(—a+ kT)E = w(—a+ kT)

possesses a solution. Hence, A is in the resolvent set of the operator L.

Conversely, assume that A # 0 is in the resolvent set of the operator L. Then for any
arbitrary w the values &(a + kT') and &{(—a + kT') of the solution to H'(u,)é — A = w are
determined. For arbitrary z € R we set

1
§(w) = L (H(wp)€) () — w(2)).
It is straightforward to verify that £ € C’g 1 and solves H’ (up)€ — A = w. We have shown that
the resolvent sets of H'(u,) and L agree up to the point A = 0. Thus, their spectra agree up
to the point A = 0 as well. The second part of the statement follows from above. O

The reader can find more information about Laurent operators and their properties in [25]
and more recent studies [26,27|. The results concerning in particular the spectrum of Laurent
operators can be found in [28]. Finally, as the spectrum of Laurent operator on ¢5*(Z) is given
by the spectrum of the corresponding matrix valued multiplication operator we refer to [29]
where the spectrum of the latter operator is studied. For the original paper on the Toeplitz and
Laurent operators see [30].

Since the eigenvalue 0 does not have any impact on the stability of u,, we now turn to the
study of the Laurent operator in (2.1) with elements as in (2.3).

As (Ap)rez € 13°*(Z) we can define a matrix function ® : St — R?*? as

O(z) =) A, zeS (2.4)

kEZ

where S! is the unit circle. The power series is uniformly convergent and thus the function
® is continuous on S!. The function ® is called a symbol or a defining function of L. It is
easily observed that ® belongs to the Weiner algebra of all periodic functions with absolutely
summable sequence of Fourier coefficients, that is ® € W?*?(S'). Via the Fourier transform
the Banach algebra of all block Laurent operators on ¢2_(Z) is isomorphic to W?2*2(S1).

We prove the following important result.

Theorem 2.2. (i) The spectrum of the block Laurent operator L : {7 (Z) — (7(Z) is
gilven as

o(1) = | o(a(2)) (25)
where ®(z) is the symbol (2.4) of L.

(ii) The spectrum o(L) is pointwise, and the eigenvectors vy = (Vx(A))pey of L can be
calculated as
Vg\k) = ZFw(zy) (2.6)

where zy € S' is such that X € a(®(zy)), and w(zy) is the corresponding eigenvalue of
the matriz ®(zy).
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P roof. To prove the first statement we recall that invertibility (and Fredholmness) of
operators on the Wiener algebra is independent on underlying space, see [31,32| and references
therein. That is, the spectrum of L : £7'(Z) — (7'(Z), does not depend on 1 < p < oo, and
is given by all the values A € C such that det(®(z) — AI) = 0 for some z € S!, see [25, 28|
and [29].

To prove the second statement let A € o(L). From (2.5) there exists z) = exp(if,), 0\ € [0, 2m)
such that
det(®(zy) — AI) = 0.

Thus, there exists an eigenvector w(zy) € C™ such that
D(z))w(zy) = Aw(zy).
Let us define v € 72 (Z) as follows
_ _ ik,
U= {Vkthez, vk=e¢ w(2z).

It is easy to check that v € (7 (Z) and is the eigenfunction of the Laurent operator L
corresponding to A. Indeed, for the nth row we have

(Lv), = ZA _n@F0(2y) ZA e (2

keZ ez
= " Z A" w(zy) = "B (2y) = " Aw(zy) = Ao,

€7

]

Next, we describe some properties of the symbol ® that corresponds to the Laurent operator
(2.3).

Lemma 2.2. The matriz ®(z) in (2.4) with Ay given by (2.3) is self-adjoint and
P(z) =®(z), z€ St

P roof. The second property follows directly from (2.4) and w(z) being real. To show
that ®(z) is self-adjoint let 6 € [0,27). Then we have

_ w(kT) w(2a+ET)\ _io
O(2)T =) (w(—2a + kT) w(2kT) ) ‘

keZ
w2a —mT)\ e
_ m — @
Z ( 2a - mT) w(—=mT) > ‘ (2)
meZ
as w(z) is symmetric, see Assumption A(i). O

From Lemma 2.2 and Theorem 2.2(i) the spectrum of L, and consequently of H'(u,), is
real and

o(L) = |J (Ma(2)) (2.7)

zeS!

where

A(2) = P11(2) — |P12(2)] and Ag(2) = P11(2) + | P12(2)] (2.8)
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and @;;(z) are the entries of the symbol matrix ®(z). Moreover, it is enough to consider only
half of the circle, that is, z = ¢ with 0 € [0, 7].

Let now z, = € in Theorem 2.2(ii) with 6/(27) being a rational number from [0, 0.5],
i.e. 0/(2m) =p/q, pU{0}, ¢ € N where p and ¢ are in the lowest terms. Then from (2.6)
the corresponding eigenvector v is (1 4 ¢)-periodic. If A # 0 then from Theorem 2.1, the
eigenfunction v of H'(u,) is (1 + ¢)7T -periodic. Thus, we can calculate the spectrum even
without calculating the symbol ®. We summarize it as a theorem.

Theorem 2.3. The spectrum of the operator L is given as

o(L)=cl (Ua (L(1+ Q)))
where L(1+q), ¢=1,2,..., are 2(1 + q) x 2(1 + q) matrices given as

By B, By .. B,
g = |0 0 B e

B B, By .. B

where

wy(nT;(1+¢)T)  wp(—2a+nT;(1+q)T)

1

Bn ,nzO,...,q.

O\ 0t a1+ T) (T (1 @)T)

We illustrate Theorem 2.3 in Pic. 12(b) for w asin (0.3).
When ¢ =0 we readily calculate L(1) = By where

wp(0; 1) wy(2a;7T)

wy(2a;T)  wy(0;7)

has the eigenvalues

~ wp(0;T) £ wy(2a;7)

Wy (0;T) — wy(2a;T)

or, equivalently, Ay =1 and Ay =1+ 2w,(2a;T)/|w,(0; T') — wy(2a; T)|.
These eigenvalues are similar to the ones obtained for bump solutions. Indeed, for a bump

L2 (2.9)

solution one can compute the corresponding eigenvalues of the Fréchet operator (at a bump
solution) as g1 = 1 and ps = 1+ 2w(2a)/|w(0) — w(2a)|, see e. g. [33]. The first eigenvalue
A =1 (u1 = 1) corresponds to the translation of the solution, see [33]. Thus, for the
bump solutions, the sign of w(2a) will define the linear stability. In the case of 1-bump
periodic solutions, w,(2a;7") > 0 implies instability. Thereby, we immediately conclude that
for excitatory connectivity functions w 1-bump periodic solutions are always unstable.

If wy(2a;T) < 0 the eigenvalues of L(2), then L(3) and etc., must be calculated. The
structure of L(1+ ¢) could be useful in exploring spectrum if the analytic expression for ® is
not available.
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As we aim at studying Lyapunov stability of 1-bump periodic solutions for (0.1) with smooth
sigmoid like function f by deriving spectral asymptotic, the eigenvalue 1 ideally must be
isolated and have multiplicity one. We believe that the second condition could be satisfied under
some additional assumptions on w,, including w,(2a;7T") # 0. The first condition, however, is
never satisfied. Thus one must employ more detailed analysis of spectral convergence than in
the case of bump solutions [23]. However, this is out of the scope of this paper.

In the next step, we apply the theory above to study linear stability of the 1-bump periodic
solutions from Example 1.1, Section 1.

Example 2.1. Define the auxiliary functions

a(f;s,T) = cosh(stisl;tl)(s—jgos(ﬁ) (2.10)
and . I
B8(0:5.T) — sinh(2as)e™ + sinh(s(T — 2a)) (2.11)

cosh(sT) — cos(6)
Then, for w as in (0.3) we obtain

S0 S a(f;s) B(0;s)
2= @) (6(9;8) <e;s>>‘

e

In Pic. 12(a) we plot A\;(e!) and M\y(el) as functions of 0, 6 € [0,27) for T =4 and the
parameters as in Pic. 4. As \;(z) —1 < 0 the 1-bump periodic solution is linearly unstable.
It can be shown that this is always the case for all admissible parameters and any 7' > 0.
Indeed, for S = 0.5 and s = 1, we obtain a — —0.5log(|2h — 1|) as T'— oo and Ay — 1
while Ay — 1/h — 1 > 1. We notice that these values could be obtained by passing the limit
in (2.9). In Pic. 11 we plot the minimum and maximum of Ay(e!) (red curves) and A;(e?)
(blue curves) for different 7. As T — 0, maxg Ay(e?) — oo.

6,
—min 0 )\2
51 - = =max A,
“ mine)\l
4*“ - - —max A,
\
\
3r s
N
A}
~
2F Mo
]e——===
2 4 6 8 10

Picture 11. Bounds for o(L) in (2.7) depending on 7" when w is given by (0.3) with S = 0.5,
s=1, and h=0.4.
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In order to illustrate Theorem 2.3, we plot the eigenvalues of the matrices L(n) for n =6,
n =10 and n =50 in Pic. 12(b).

) fix x and y ticks 35 fix yticks with MatLab2017
i0
)\1(9? ) 3r 3 CEE—
1.8t /\2(e|9)
257
167
2 - @mssssssssssssD
147
15¢
127 1+ eeew e o o oo
1 0.5 :
0 2 4 6 1 1.2 14 1.6 18 2
0

(a) (b)
Picture 12. (a) The eigenvalues A 2(el) as functions of § when w is given by (0.3) with
parameters S = 0.5, s=1, h =04 and T = 4. (b) The eigenvalues of the matrices L(n)
for n =6, n =20 and n =50 (black dots) with the same parameters as in (a).

Let us consider w in (0.4). We readily find

1 Sla(ea S1, T) - 5206(9, 52, T) Slﬁ(97 S1, T) - 525(97 52, T))
515(9781,T) - 525(9,82,T) 5104(9, 317T) - 5204(9; 82,T)

with wu(a) given by (1.8).
For this case we have different cases depending on 7T, see Table 1.

Table 1.
Parameters Number of solutions Stability
0<T<Ty One solution Unstable
T=1T Two solutions u,; and u, ¢, Unstable
T e (11,Ty) Tree solutions u, ; Unstable
T>1T, Tree solutions u, ; Up 1, Up 3 are unstable,

Up,2 1s stable

Upi = Up(z;0;), 1=1,2,3 are 1-bump periodic solutions for a; < as < as.
For parameters S; =4, s; =2, Sy =15, s =1 and h = 0.4 we have T} = 2.4997,
Ty = 3.3320 and examples of wu,. given in Pic. 7-Pic. 8.

The solution w,; is always unstable, see Table 1. Similarly to the previous examples, we
plot spectral bounds in Pic. 13. In Pic. 13(b) we plot the boundaries of A;(z) to illustrate that
at T'= T} the eigenvalue becomes less than 1, which in this case does not effect the stability
of the solution.
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5r 1 1.041
1 1 N
' \ mlnH/\1
al \‘ 1.03 + “ - _max@)\l
\ 1
. amm=- \
\ - ‘—/‘ 1.02 ¢ \
- Ay
3r \\ ,,‘ : \
- ——min , A, 101} A8
2l - - -max,\,
mina)\1
‘--~~~ - - —max A
1 : : i ‘ 0.99 :
1 2 3 4 1.5 2 2.5 3 3.5
T T

Picture 13. Bounds for (L) when u, = up 1, depending on T. Here w is given by (0.4)
with 51 =4, s1=2, S9=1.5, ss =1 and h = 0.4, see Table 1.

The period T" = T} corresponds to the critical situation where the new linearly unstable
solution w, .. appears, and splits into two unstable solutions w,s and w,s for T" = T} + ¢,
€ > 0. The spectrum of L in this case has no spectral gap. see Pic. 14.

1.4

——,(€"), T= 2.4997
—— )\, (e"), T=2.4997 | |

137

127

117

1

0.9 :
0 m 27
0
Picture 14. The eigenvalues A;(e?) and A;(e?) when u, = up . Here w is given as in (0.4)
with S1 =4,s1 =2, So=1.5, so =1, h =04, the critical period value T' =T} = 2.4997 giving
o(L) = [9.8460, 1.3403] (all the approximated values are rounded up to 4 decimals).

For the solution wu,9 we plot the bifurcation diagram in Pic. 15. The red curves corresponds
to the minimum and maximum of Ay and blue to the minimum and maximum values of \;
for different T. From (2.8) the spectrum of H'(u,2) lies in between of red and blue curves.

1.3¢
l‘ —min 0 )\2
1.2 *.‘ - = =max,\,
N === 071

R Vi
.

------------

N

Picture 15. Bounds for o(L), when u, = u,2, depending on 7. The marked values corresponds
to T = 3.1849 (yellow), T" = 3.3320 (black) and T = 3.5243 (green) (all the values are rounded up to
4 decimals). Here w is given as in (0.4) with S; =4,s1 =2, So = 1.5,s9 =1, h = 0.4, see Table 1.
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The point 7" = 3.1849 in Pic. 15 seemingly appears as a bifurcation point. This is however
not the case and T = 3.1849 only corresponds to the situation when minimum of Ay(e?)
becomes negative. In order to clarify this point we plot A\y(e?) for T = 3.18, T = 3.1849 in
Pic. 16(a). We also plot Ay(e?) for T = 3.25 and the bifurcation point T = T, = 3.3320
in Pic. 16(a). For T = 3.5243 the spectrum is again a connected set o(L) = [0.8007,1], see
Pic. 16(b).

1.005 ; : 1
1 pa— —_— —_— -
0.95 ¢
0.995
— "), T=3.18 097
0.99 f » ]
— ("), T=3.1849
0.985 - —)\z(eie), T=3.25 i 0.85 /\1(ei9), T=3.5243
2", T=3.3320 ——\,(€"), T=3.5243
0.98 : 08 ‘ ~
0 T 2m 0 T 2m
0 6

(a) (b)
Picture 16. The eigenvalue \o(e'?) in (a) and A;2(e?) in (b) when wu, = u, 2, see Table 1 for
different T. Here w is given as in (0.4) with S1 =4,s1 =2, So =15, so =1, h=0.4.

Similarly, we plot the spectral bounds for w,3 in Fig. 17.

227

2t

187

167

14y

127

1

Picture 17. Bounds for (L) when w, = u,3, depending on T, see Table 1. Here w is given as in
(04) with Sl = 4, S1 = 2, SQ = 1.5, S9 = 1, h=0.4.

As T — oo the limiting values could be calculated from (2.9) once the limiting expression
for a(T) is obtained. The calculations however are cumbersome and we omit them here. The
numerical calculations however indicate, as illustrated in Pic. 13,15 and 17, that there are no
stability changes for larger period T.
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We plot examples of \j(€?) and Ay(e) as functions of 6 for T = 1.5, T = 3.2 and
T = 3.5 for every solution w,;, 7=1,2,3, in Pic. 18 — 20.

3
i0
)
o5t —/\Z(e'g) |
2t \
15¢
1 L
0 T 27

0

Picture 18. The eigenvalues \jo(e'?) when u, = u,;. Here w is given as in (0.4)
with S1=4,81 =2, So =15, so =1, h=04, and T = 1.5.
The resulting spectrum o (L) = [1,1.0684] U [1.8449, 2.6479].

35 1.05
of )\l(elﬂ) H ) /\l(elﬁ)
i0 i0y =
— 6" — ")
25¢
0.95
2 .
09r
15¢F
1 0.85F
0.5 ' 0.8
0 ‘n' 27 0 s 2
0 0

1.8
i0
/ /\1(67 )
16 — "
1.4+
1.2+
1
0.8
0 T 27

(c)

Picture 19. The eigenvalues A1 2(e?) for w, = u,1 in (a), up = up2 in (b) and u, = u,3 in (c).
Here w is given as in (0.4) with S; =4,81 =2, S =15, s =1, h=04, and T = 3.2.
The corresponding spectra are o(L) = [0.9969, 1] U [3.1147, 3.4945],

(L) = [0.8020,0.9692] U [0.9978,1.0022] and o(L) = [0.9921, 1] U [1.5419, 1.7825], respectively.

(All the approximated values are rounded up to 4 decimals).
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4 1
L Al(efg) Al(efﬂ)
3f — "] 095 —,E")|
2 0.9
1 0.85
0 0.8
0 T 27 0 T 2w
[% 0
(a) (b)
2
A i0
1.8+ 1(eig) ]
— A7)
16 ]
14+
1.2+
1
0.8
0 T 27
(%

(c)

Picture 20. The eigenvalues A1 a(e'?) for u, = u,1 in (a), up = upo in (b) and u, = up3 in (c).
Here w is given as in (0.4) with S1 =4,81 =2, Sy =15, s =1, h=04, and T = 3.5.
The corresponding spectra are o(L) = [0.9973, 1] U [3.2365, 3.5318],

o(L) = [0.8005,0.9616] U [0.9633,1] and o(L) = [0.9934, 1] U [1.6494, 1.8390], respectively.
(All the approximated values are rounded up to 4 decimals).

Conclusions and outlook

In the present paper we have studied the existence of stationary periodic solutions, the
so-called 1-bump periodic solutions, of the Amari model, and their linear stability. We have
restricted the choice of the firing rate function to the Heaviside function. This allowed us
to obtain an almost explicit description of the solutions when the connectivity functions w
are sufficiently localized symmetric interactions with positive total mass. We have shown that
the analysis of the existence then boils down to analysing the behaviour of the T -periodic
function w,(x;T'), obtained as the infinite sum of w(x+ kT’), on the half period interval. Once
w, is given, this analysis is in fact even simpler than the analysis of the existence for 1-bump
solutions as in [1]. The main difficulty here is that, in most cases, w, has no analytic expression
and has to be approximated. Despite that, the considered approach of constructing solutions
is still simpler than the ODE-method proposed in [8]. In addition, it allows us to address the
uniqueness of solutions and is not restricted to a particular type of w. To illustrate the method
we have constructed 1-bump periodic solutions for different types of w.



EXISTENCE AND STABILITY OF PERIODIC SOLUTIONS IN A NEURAL FIELD EQUATION 293

The choice of the Heaviside function also enabled us to analyse the spectral stability of the
solutions, which is the main contribution of this paper. This was done by analysing the spectrum
of a Laurent block operator which, we have proved, possesses almost the same eigenvalues as
the Fréchet derivative of the operator in consideration. We have shown that the model (0.1)
can have both linearly stable and unstable periodic solutions for some connectivity functions.
When w is of the excitatory type, the periodic solutions are always unstable.

In order to draw the conclusions about Lyapunov stability of the solutions based on their
linear stability, the firing rate function f must be smooth enough, which is not the case here.
We conjecture that the existence and stability results would hold for steep sigmoid like functions
f, see (0.6). To prove this conjecture one can proceed in the way similar to [10] and [23]. It
is not possible to apply the results from the mentioned papers directly since the eigenvalue
A =1 of the Fréchet derivative of the operator defined by (0.2) is not isolated. However, the
stability analysis in Section 2. shows that the spectrum is pointwise and the eigenfunctions
can be calculated, which gives a possibility of studying the dynamics of solutions on a central
manifold. We plan to address this problem in our future work.

Another topic that we have not properly addressed in this paper, is the coexistence of the
localized and periodic solutions with different stability properties. The combination of the ODE-
methods [11,15, 18] with the results obtained here could be used to investigate this interesting
problem.

Finally, we would like to mention that the analysis presented here could be generalized
to the case of NV-bump periodic solutions and several dimensions.While the stability analysis
could be extended without much changes, the major difficulty is to obtain the necessary and

sufficient conditions for the existence of regular solutions and to find their intersections with
the threshold.
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of the manuscript.
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