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Abstract. In this paper we show first of all that for solutions of the strict KP hierarchy it
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Introduction

The main goal of this paper is to present the scaling transformations that map solutions
of the strict KP hierarchy from one setting to another one. Besides that we also show that as
far as solutions are concerned, it is sufficient to consider standard settings. We illustrate the
scaling invariance at the hand of the Khadomtsev–Petviashvilii (KP) equation from plasma
physics [1]. This nonlinear equation for a function u = u(x, y, t) is a two-dimensional variant
of the KdV equation and reads
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The numerical coefficients of the various terms in the KP equation are not so relevant.
Consider namely the following transformation of the dependent and independent variables

x̂ = α1x, ŷ = α2y, t̂ = α3t, u = βû, with α1 6= 0, α3 6= 0 and β 6= 0. (0.1)

Then a direct computation shows that the KP equation in the new coordinates becomes
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2ûûx̂)x̂

and this illustrates the wide range of coefficients that can be obtained. We call transforma-
tions as described in formula (0.1), where the dependent and independent variables change
by a constant nonzero factor scaling transformations. Note that the choice β = α2 = α2

1 and
α3 = α3

1 transforms a solution of the KP equation in the old coordinates to a solution in the
new. The equations of the strict KP hierarchy also possess a scaling invariance which can
conveniently be shown with the help of the minimal realization of the equations presented
here. The contents of the various sections is as follows: Section 1. describes the necessary
prerequisites of the strict KP hierarchy. The next section treats the standartization of the
notion of setting and the last section presents the minimal realization of the hierarchy and
its scaling invariance.

1. The strict KP hierarchy

In this section we shortly recall the results needed from [2] about the strict KP-hierarchy
in the pseudo differential operators Psd. The algebra Psd is built up as follows: one starts
with a commutative algebra R over a field k of characteristic zero and a privileged k -
linear derivation ∂ : R 7→ R. Given R and ∂, one forms the algebra R[∂] of differential
operators in ∂ with coefficients from R. It consists of k -linear endomorphisms of R of
the form

∑n
i=0 ai∂

i, ai ∈ R. For simplicity, we assume that the powers of ∂ are R -linear
independent, otherwise one has to pass to a cover of R[∂] [3]. Next one extends the algebra
R[∂] by adding the inverses of all the powers of ∂ and by allowing infinite sums of these
negative powers. Thus one arrives at the algebra Psd=R[∂, ∂−1) of all formal series

p =
N∑

j=−∞

pj∂
j, pj ∈ R.
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If one uses for each n ∈ Z, the notation(
n

k

)
:=
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,

then the product of two series a =
∑

j aj∂
j and b =
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i is given by
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The algebra Psd possesses various decompositions. For s ∈ Z, any pseudo differential
operator P =

∑
j pj∂

j ∈ Psd can be split as

P = P>s + P6s, where P>s =
∑
j>s

pj∂
j and P6s =

∑
j6s

pj∂
j. (1.1)

For s = 0, this corresponds to writing P as the sum of its pure differential operator part
P>0 and its integral operator part P60. This decomposition is important for the strict KP
hierarchy, the one for s = −1 for the KP hierarchy.

As any associative k -algebra, also Psd is w.r.t. the commutator a Lie algebra over k.

From the multiplication rules in Psd follows that for s = 0 the decomposition (1.1) yields a
splitting of the Lie algebra Psd into the direct sum of two Lie subalgebras, namely

Psd = {P ∈ Psd, P = P60} ⊕ {P ∈ Psd, P = P>0} := Psd60 ⊕ Psd>0.

We write π>0 for the projection from Psd on Psd>0 consisting of taking the strict differential
operator part of an element in Psd. Similarly, one defines the projections of Psd on respec-
tively Psd60, Psd>−1 and Psd6−1, by respectively π60, π>0 and π<0. To the Lie algebra
Psd60 we associated the group

D(0) = {p0 +
∑
j<0

pj∂
j | p0 ∈ R∗}.

Inside Psd we consider perturbations M of the basic derivation ∂ that have the form

M = ∂ +
∞∑
j=0

mj+1∂
−j. (1.2)

They are prototypes of deforming the operator ∂ by conjugating or dressing with an element
from D(0).

Let k[∂]0 be the {
∑N

i=1 ai∂
i | all ai ∈ k}. Then k[∂]0 is a commutative Lie subalgebra

of Psd>0 and we see k[M ]0 = {
∑N

i=1 aiM
i | all ai ∈ k} as a commutative deformation of

k[∂]0. Now one searches for deformations {Mm,m > 1} of the elements {∂m} such that
their evolution is given by Lax equations whose form is determined by the projection π>0.

More concretely, we assume for the deformations {Mm} that the k -algebra R is, besides
with a privileged k -linear derivation ∂, also equipped with a collection {∂r | r > 1} of
k -linear derivations of R commuting with ∂, that form the infinitesimal generators of the
various flows of the evolution. The Lax equations each Mm should satisfy are

∂r(M
m) = [Mm, π60(M

r)] = [π>0(M
r),Mm] = [Cr,M

m], for all r > 1,



334 Helminck G.F., Panasenko E.A.

where Cr is a short hand notation for π>0(M
r). Since ∂r and taking the commutator with

Cr are both derivations of Psd, one sees that it suffices to find an M such that

∂r(M) = [Cr,M ] = [M,π60(M
r)]. (1.3)

The equations (1.3) for an operator M in Psd of the form (1.2), are called the Lax equations
of the strict KP hierarchy and M is named a solution of the hierarchy. The data (R, ∂, {∂r})
are called a setting for this nonlinear system.

R e m a r k 1.1. Note that any setting for the strict KP hierarchy admits the trivial
solution M = ∂. Since C1 = ∂ for any M, the Lax equation for r = 1 becomes

∂1(M) = ∂(M).

Hence, one often takes ∂ = ∂1 and if moreover all the {∂r} commute among each other,
we call the setting (R, ∂1, {∂r}) standard and use the notation (R, {∂r}). Both at the
solvability of the related Cauchy problem in [4] and at the geometric construction of solutions
of the strict KP hierarchy in [5], we only worked with standard settings. The next section
shows that this is sufficient.

R e m a r k 1.2. Let M be a solution of the strict KP hierarchy. We denote the
differential subalgebra of R generated by the coefficients of M by R(M). It consists of
all polynomial expressions in the {∂s(mj+1) | j > 0, s > 0}. The derivation ∂ is clearly
an endomorphism of R(M) and for simplicity we denote the restriction of ∂ to R(M) by
∂M . From the fact that all coefficients of the {Cr} belong to R(M), one sees that also all
the derivations {∂r} are mapping R(M) into itself. The restriction of each ∂r to R(M)

is similarly denoted by ∂r,M . In particular, it follows from Remark 1.1 that ∂M = ∂1,M .

The data (R(M), ∂M , {∂r,M}) form then a setting for the strict KP hierarchy and M is a
solution in this setting.

R e m a r k 1.3. The independent and dependent variables relevant for the strict KP
hierarchy are the flow parameters of the derivations {∂r} and ∂ from the setting and the
{mj+1 | j > 0}. Because the action of ∂ and ∂1 on M is the same, we will consider in the
sequel scaling transformations of the form

∂ = α1∂̂, ∂r = αr∂̂r,mj+1 = βjm̂j+1, (1.4)

with {αr ∈ C∗ | r > 1} and {βj ∈ C∗ | j > 0}. They link with the setting (R, ∂̂, {∂̂r}) for
the strict KP hierarchy.

2. Reduction to a standard setting

We want to show in this section that, given a setting (R, ∂1, {∂r}) of the strict KP
hierarchy, there is a k -subalgebra R1 of R such that ∂|R1 and all the {∂r|R1} are
derivations of R1 and the setting (R1, ∂|R1, {∂r|R1}) is standard. To do that we need
another form of the strict KP hierarchy. It was shown in [2] that the strict differential
operators {Cr} in Psd corresponding to a solution M of the strict KP-hierarchy, satisfy

∂r1(Cr2)− ∂r2(Cr1)− [Cr1 , Cr2 ] = 0. (2.1)
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We call the equations (2.1) the zero curvature relations for the strict cut-off’s {Cr} of the
solution M of the strict KP-hierarchy. The zero curvature relations are also sufficient to get
the Lax equations for M, for there holds

Theorem 2.1. Let (R, ∂, {∂r}) be a setting for the strict KP hierarchy and let M be
an element in Psd of the form (1.2). Then M satisfies the Lax equations of the strict KP
hierarchy if and only if the zero curvature relations (2.1) for the {Cr | r > 1} hold.

By using this zero curvature form of the strict KP hierarchy, we can make an important
step towards the realization of our goal. For there holds

P r o p o s i t i o n 2.1. The setting (R(M), ∂M , {∂r,M}) is standard.

P r o o f. We already saw in Remark 1.2 that ∂M = ∂1,M , so we merely have to show
that the derivations {∂r,M} commute. Note that if a and b are in R(M), then there hold
for all r1 > 1 and r2 > 1 the identities

∂r1∂r2(ab) = ∂r1∂r2(a)b+ ∂r2(a)∂r1(b) + ∂r1(a)∂r2(b) + a∂r1∂r2(b),

∂r2∂r1(ab) = ∂r2∂r1(a)b+ ∂r1(a)∂r2(b) + ∂r2(a)∂r1(b) + a∂r2∂r1(b).

Hence, if a and b are in the kernel of the commutator of ∂r1 and ∂r2 , then their product
also belongs to this kernel. The algebra R(M) is the polynomial algebra generated by the
{∂s(mj+1) | j > 0, s > 0} so it suffices to show that their actions on these elements commute.
Further, all the {∂r,M} commute with ∂M and that reduces the problem to demonstrating
for all r1 > 1 and r2 > 1 that

∂r1∂r2(M)− ∂r2∂r1(M) = 0. (2.2)

Using the Lax equations for M we get

∂r1∂r2(M) = ∂r1([Cr2 ,M ]) = [∂r1(Cr2),M ] + [Cr2 , [Cr1 ,M ]]

and likewise

∂r2∂r1(M) = [∂r2(Cr1),M ] + [Cr1 , [Cr2 ,M ]].

Since ad([Cr1 , Cr2 ]) = [ad(Cr1), ad(Cr2)] we see that the left hand side of equation (2.2) is
equal to

[∂r1(Cr2)− ∂r2(Cr1)− [Cr1 , Cr2 ],M ]

and, because M is a solution of the strict KP hierarchy, the left component of this commu-
tator is zero by Theorem 2.1. This proves the statement in the proposition.

LetRsol be the subalgebra of R consisting of the polynomial expressions in the {∂s(mj+1)}
for all solutions M = ∂+

∑∞
j=0mj+1∂

−j of the strict KP hierarchy in the setting (R, ∂, {∂r}).
Rsol is exactly the subalgebra of R that is of interest for finding solutions of this hierarchy.
The derivations ∂ and ∂1 are equal on Rsol, all the {∂r} map Rsol to itself and it follows
by the same argument as in the proof of Proposition 2.1 that all the {∂r} commute on Rsol.

Hence, by restricting R to Rsol one does not loose relevance for the strict KP hierarchy and
the setting becomes standard. So we have



336 Helminck G.F., Panasenko E.A.

Theorem 2.2. The setting (Rsol, ∂|Rsol, {∂r|Rsol}) is standard.

One advantage of a standard setting is that it allows another characterization of the
equations of the hierarchy. Note thereto first of all that there is associated to a solution M

of the strict KP-hierarchy still another set of pseudo differential operators that satisfy zero
curvature relations. For, if we write for each r > 1

Dr := −(M r)60,

then we know that there hold respectively the Lax equations

∂r(M) = [Cr,M ] = [Dr,M ]

and in that light it is not surprising that the collection {Dr} satisfies

∂r1(Dr2)− ∂r2(Dr1)− [Dr1 , Dr2 ] = 0.

To show this, one takes the zero curvature equations for the {Cr}, one substitutes
Cr = M r +Dr and uses the Lax equations for the relevant powers of M. This yields

∂r1(Dr2 +M r2)− ∂r2(Dr1 +M r1)− [Dr1 +M r1 , Dr2 +M r2 ] =

∂r1(Dr2)− ∂r2(Dr1) + ∂r1(M
r2)− [Dr1 ,M

r2 ]− ∂r2(M r1)− [M r1 , Dr2 ]− [Dr1 , Dr2 ] =

∂r1(Dr2)− ∂r2(Dr1)− [Dr1 , Dr2 ] = 0.

In a standard setting there holds also the reverse of the statement

Theorem 2.3. Let M be a candidate solution to the strict KP-hierarchy in a standard
setting. Then there holds that M is a solution of the strict KP-hierarchy if and only if all
the {Dr} satisfy the zero curvature equations

P r o o f. For each P ∈ Psd, we have ∂(P ) = [∂, P ]. Hence, in a standard setting we
have ∂1(P ) = [∂, P ]. Now we only need to show still that the zero curvature equations are
sufficient. Thereto we use these equations for the case r1 = 1 respectively r2 = r and we
substitute D1 = ∂ −M. This yields

∂1(Dr)− ∂r(∂ −M)− [∂ −M,Dr] =

∂1(Dr)− [∂,Dr] + ∂r(M) + [M,Dr] = ∂r(M)− [Dr,M ] = 0,

which are the Lax equations one is looking for. This proofs the result.

3. A minimal realization and scaling invariance

In this section we want to discuss a minimal realization of the equations (1.3) in the sense
that there are a minimal number of relations between the coefficients of the potential solution
M and their derivatives w.r.t. ∂. Therefore we start with a proper complex coefficient
algebra R̃ and a privileged k -linear derivation ∂̃ of R̃. Keep in mind that any k -linear
derivation ∆ of a polynomial ring k[xs, s ∈ S] in any number of variables S, is determined
uniquely by prescribing the images ∆(xs) of all the {xs} thanks to the derivation property

∆(fg) = ∆(f)g + f∆(g), for all f and g ∈ k[xs].
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Moreover, one can choose the ∆(xs) arbitrarily. This brings us to the choice

R̃ := k[m̃
(s)
j+1 | j > 0, s > 0]

of all polynomials in the unknown {m̃(s)
j+1 | j > 0, s > 0} with coefficients from k and the

k -linear derivation ∂̃ of R̃ defined by

∂̃(m̃
(s)
j+1) := m̃

(s+1)
j+1 , all j, j > 0, all s > 0.

It is convenient to put a multiplicative grading on the monomials in the unknown of R̃,
according to the prescription on their building blocks

deg(m̃
(s)
j+1) = j + 1 + s

and that gives a decomposition

R̃ = ⊕s>0R̃
(s), where R̃(s) is the span of the monomials of degree s.

Then ∂̃ is a k -linear map of order one w.r.t. the grading and hence each k -linear map
r∂̃m,m > 0, with r a homogeneous element of degree p in R̃, maps R̃(s) to R̃(s+p+m).

Using this property, it is a straightforward verification that the pair (R̃, ∂̃) is a proper
starting point in the sense that

Lemma 3.1. The action of R̃[∂̃] on R̃ is faithful.

The grading on R̃ extends to a grading on R̃[∂̃] by assigning the order m + p to the
C -linear maps r∂̃m, r ∈ R̃(p). Likewise, we can call an element P of R̃[∂̃, ∂̃−1) homogeneous
of degree m, if P can be written as

P =
∑
i6N

pm−i∂̃
i, with all pm−i ∈ R̃(m−i).

The multiplication rules in R̃[∂̃, ∂̃−1) are such that the product of two homogeneous elements
of degrees m1 resp. m2 yields a homogeneous element of degree m1 +m2. This implies that
all strict cut-off’s C̃i := (M̃ i)>0, i > 1, are homogeneous as well. Note that C̃1 = ∂̃. Next
we try to find k -linear derivations {∂̃i | i > 1} of R̃ that all commute with ∂̃ and such
that M̃ becomes for the setting (R̃, ∂̃, {∂̃i}) a solution of the Lax equations (1.3). Since
they have to commute with ∂̃, there has to hold for all r > 1, all s > 0 and all j, j > 0

that
∂̃r(m̃

(s)
j+1) = ∂̃s(∂̃r(m̃

(0)
j+1)),

so that one merely has to prescribe the action of the derivation ∂̃r on the set of coefficients
{m̃(0)

j+1) | j > 0} of the differential operator M̃. Keeping our goal in mind, we have to define
the action of ∂̃r on M̃ by

∂̃r(M̃) := [C̃r, M̃ ]. (3.1)

In this way M̃ becomes by definition a solution of the strict KP hierarchy w.r.t. the setting
(R̃, ∂̃, {∂̃r}) and M̃ together with the setting (R̃, ∂̃, {∂̃r}) we call a minimal realization of
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the strict KP hierarchy. Note that, since R̃ = R̃(M̃) the setting (R̃, ∂̃, {∂̃r}) is standard by
Proposition 2.1.

Next we describe in an algebraic way how other realizations of solutions of the strict KP
hierarchy are related to this minimal realization. Consider any setting (R, ∂, {∂r}) for this
hierarchy and a potential solution M ∈ R[∂, ∂−1) of the form (1.2). Each pseudo differential
operator M determines uniquely a k -algebra morphism

iM : R̃→ R

by the prescription
iM(m̃

(s)
j+1) = ∂s(mj+1)

and this k -algebra morphism satisfies by definition

iM ◦ ∂̃ = ∂ ◦ iM . (3.2)

The map iM extends to a k -algebra morphism from the pseudo differential operators
R̃[∂̃, ∂̃−1) to R[∂, ∂−1) such that

iM(M̃) = M and iM(C̃r) = Cr.

Assume now that M is a solution of the Lax equations of the strict n -KdV hierarchy, then
we have for all r > 1 that

∂r(M) = ∂r ◦ iM(M̃) = [Cr,M ] = [iM(C̃r), iM(M̃)] =

= iM([C̃r, M̃ ]) = iM ◦ ∂̃r(M̃)

Thus the k -linear maps ∂r ◦ iM and iM ◦ ∂̃r are equal on the coefficients of M̃, but, because
of relation (3.2) and the fact that the derivations {∂r} commute with ∂, we get on R̃[∂̃, ∂̃−1)

the compatibilities
∂r ◦ iM = iM ◦ ∂̃r, for all r > 1. (3.3)

On the other hand, if the compatibilities (3.3) hold for the map iM , then one applies these
identities to M̃ and, as iM is a k -algebra morphism, we obtain the Lax equations for M.

So we may conclude

Lemma 3.2. The relations (3.3) for the map iM are equivalent to M being a solution
of the strict KP hierarchy w.r.t. the setting (R, ∂, {∂r}).

Next we discuss the effect of the scaling transformations (1.4) in R̃[∂̃]. Thereto we first
make the substitutions

∂̃ = α1
ˆ̃∂ and m̃j+1 = βj ˆ̃mj+1.

If ˆ̃R = k[ ˆ̃m
(s)
j+1 | j > 0, s > 0] with ˆ̃m

(s)
j+1 = ( ˆ̃∂)s( ˆ̃mj+1), then ˆ̃R = R and this substitution

determines an isomorphism between R̃[∂̃, ∂̃−1) and ˆ̃R[ ˆ̃∂, ˆ̃∂−1). The element M̃ expresses as
follows in ˆ̃R[ ˆ̃∂, ˆ̃∂−1)

M̃ = α1(
ˆ̃∂) +

∞∑
j=0

βjα
−j
1

ˆ̃mj+1(
ˆ̃∂)−j.
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Hence, if we take from now on βj = αj+1
1 for all j > 0, then M̃ = α1

ˆ̃M with ˆ̃M =

( ˆ̃∂) +
∑∞

j=0
ˆ̃mj+1(

ˆ̃∂)j of the form (1.2). So, we get C̃r = αr
1

ˆ̃Cr = αr
1(

ˆ̃M r)>0 for all r > 1.

Hence, under the present scaling transformation the Lax equations for M̃ become

∂̃r(M̃) = αrα1
ˆ̃∂r(

ˆ̃M) = [C̃r, M̃ ] = α1+r
1 [ ˆ̃Cr,

ˆ̃M ]. (3.4)

If we choose, moreover, all αr = αr
1, then the equations (3.4) show that ˆ̃M is a solution of

the strict KP hierarchy in the setting ( ˆ̃R, ˆ̃∂, ˆ̃∂r). Combining the considerations above leads
to the following scaling invariance for solutions of the strict KP hierarchy

Theorem 3.1. Let M solve the strict KP hierarchy in the setting (R, ∂, {∂r}). For
α ∈ C∗, we consider the scaling transformation (1.4) with αr = αr, r > 1 and βj = αj+1,

j > 0. Then substitution of this transformation into M yields an M̂ = α−1M in R[∂̂, ∂̂−1)

that is a solution of the strict KP hierarchy in the setting (R, ∂̂, {∂̂r}). Hence, if the flow
parameters in the original setting were s = {sr}, then in the new setting (R, ∂̂, {∂̂r}) the
flow parameters become the ŝ = {ŝr = α−rsr}.

R e m a r k 3.1. The scaling invariance of the strict KP hierarchy, as described in
Theorem 3.1, offers the possibility to construct wave functions of the hierarchy corresponding
to various spaces of boundary values on circles around the origin. In [5] one can find the
construction for the L2 -boundary values on the unit circle.In a forthcoming paper we will
treat various examples.
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