ОДНОПИКОВЫЕ ПО ЭРРОУ ДОМЕНЫ ПРЕДПОЧТЕНИЙ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследуются множества линейных порядков (домены), которые в сужении на каждую тройку альтернатив являются однопиковыми, т. е. в каждой тройке существует альтернатива никогда не стоящая на последнем месте в сужениях линейных порядков на эту тройку. Данные множества линейных порядков называются однопиковыми по Эрроу. Найдено количество однопиковых по Эрроу доменов и количество неизоморфных классов однопиковых по Эрроу доменов. Показано, что однопиковые по Эрроу домены однозначно соответствуют бинарным матрицам, не содержащих подматрицу специального вида.

Об авторах

А. В Карпов

Национальный Исследовательский Университет Высшая Школа Экономики; Институт проблем управления имени В.А. Трапезникова Российской академии наук

Email: akarpov@hse.ru
Москва, Россия

Список литературы

  1. Akello-Egwel D., Leedham-Green C., Litterick A., Markstrom K., Riis S. Condorcet domains on at most seven alternatives // Math. Soc. Sci. 2025. V. 133. P. 23–33.
  2. Anstee R.P. Properties of (0,1)-matrices without triangles // J. Comb. Theory Ser. A. 1980. V. 29. P. 186–198.
  3. Anstee R.P. A survey of forbidden configuration results. Electron // J. Comb. 2013. V. 20(1). DS20.
  4. Durand S. Finding sharper distinctions for conditions of transitivity of the majority method // Discret. Appl. Math. 2003. V. 131. P. 577–595.
  5. Elkind E., Lackner M. Structure in dichotomous preferences // Proc. IJCAI-2015. 2015. P. 2019–2025.
  6. Karpov A.V. Structured preferences: A literature survey // Autom. Remote Control. 2022. V. 83. P. 1329–1354.
  7. Karpov A. Structure of single-peaked preferences // J. Math. Psychol. 2023. V. 117. 102817.
  8. Karpov A., Slinko A. Constructing large peak-pit Condorcet domains // Theory Decis. 2023. V. 94(1). P. 97–120.
  9. Liversidge G. Counting Condorcet domains / Arxiv preprint, math.CO. 2020. arXiv:2004.00751.
  10. Markstrom K., Riis S., Zhou B. Arrow’s single peaked domains, richness, and domains for plurality and the Borda count / Arxiv preprint, econ.TH. 2024. arXiv:2401.12547.
  11. Puppe C., Slinko A. Maximal Condorcet domains. A further progress report // Games Econ. Behav. 2024. V. 145. P. 426–450.
  12. Slinko A. Condorcet domains satisfying Arrow’s single-peakedness // J. Math. Econ. 2019. V. 84. P. 166–170.
  13. Slinko A. A combinatorial representation of Arrow’s single-peaked domains / Arxiv preprint, math.CO. 2024. arXiv:2412.05406.
  14. Terzopoulou Z., Karpov A., Obraztsova S. Restricted domains of dichotomous preferences with possibly incomplete information // Proc. AAAI-21. 2021. V. 35(6) P. 5726–5733.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).