Двумерные самозаклинивающиеся структуры в трехмерном пространстве

Обложка

Цитировать

Полный текст

Аннотация

Известно, что если на плоскости имеется конечный набор выпуклых фигур, внутренности которых не пересекаются, то среди этих фигур имеется хотя бы одна крайняя – такая, которую можно непрерывно передвинуть “на бесконечность” (за пределы большого круга, содержащего остальные фигуры), оставляя все остальные фигуры неподвижными и не пересекая их внутренности в процессе движения.

Было обнаружено, что в пространстве размерности три имеет место феномен самозаклинивающихся структур. Самозаклинивающаяся структура – это такой конечный (или бесконечный) набор выпуклых тел с непересекающимися внутренностями, что если зафиксировать все, кроме любого одного, то это тело нельзя “унести на бесконечность”.

С давних пор имеющиеся структуры базируются на рассмотрении слоев из кубов, тетраэдров и октаэдров, а также их вариаций.

В данной работе мы рассматриваем принципиально новый феномен двумерных самозаклинивающихся структур: набор двумерных многоугольников в трехмерном пространстве, где каждую многоугольную плитку нельзя унести на бесконечность. Из тонких плиток собираются самозаклиненные декаэдры, из которых, в свою очередь, собираются структуры второго порядка. В частности, приводится конструкция колонны, составленной из декаэдров, устойчивой при фиксации двух крайних декаэдров, а не всей границы слоя, как в структурах, исследованных ранее.

Об авторах

В. О. Мантуров

Московский физико-технический институт; Казанский федеральный университет; Северо-Восточный университет

Автор, ответственный за переписку.
Email: vomanturov@yandex.ru
Россия, Москва; Казань; Шэньян, Китай

А. Я. Канель-Белов

Московский физико-технический институт; Университет им. Бар-Илана; Магнитогорский государственный технический университет им. Г.И. Носова

Email: kanelster@gmail.com
Россия, Москва; Рамат-Ган, Израиль; Магнитогорск

С. Ким

Цзилиньский университет

Email: kimseongjeong@jlu.edu.cn
Китай, Чанчунь

Ф. К. Нилов

Московский физико-технический институт; Московский государственный университет им. М.В. Ломоносова

Email: nilovfk@gmail.com
Россия, Москва; Москва

Список литературы

  1. Kanel-Belov A.J., Dyski A.V., Estrin Y., Pasternak E., Ivanov I.A. Interlocking of convex polyhedra: towards a geometric theory of fragmented solids. Moscow Mathematical Journal, 2010. arXiv:0812.5089v1.
  2. Канель-Белов А.Я. Самозаклинивающиеся структуры // Квант. Физико-математический журнал для школьников и студентов. Январь–февраль 2009. Т. 1. С. 20–23.
  3. Djumas L., Simon G.P., Estrin Y. et al. Deformation mechanics of non-planar topologically interlocked assemblies with structural hierarchy and varying geometry // Nature. Sci Rep 7. 2017. P. 11844. https://doi.org/10.1038/s41598-017-12147-3
  4. Khandelwal S., Siegmund T., Cipra R.J., Bolton J.S. Transverse Loading of Cellular Topologically Interlocked Materials // Int. J. Solids Struct. 2012. Vol. 49. No. 18. P. 2394–2403.
  5. Khandelwal S., Cipra R.J., Bolton J.S., Siegmund T. Adaptive Mechanical Properties of Topologically Interlocking Material Systems // Smart Mater. Struct. 2015. Vol. 24. No. 4. P. 045037.
  6. Feng Y., Siegmund T., Habtour E., Riddick J. Impact mechanics of topologically interlocked material assemblies // Intl. J. Impact Eng. 2015. Vol. 75. P. 140–149.
  7. Siegmund T., Barthelat F., Cipra R.J., Habtour E., Riddick J. Manufacture and Mechanics of Topologically Interlocked Material Assemblies // Applied Mechanics Reviews. 2016. Vol. 68.No. 4. P. 041401–1.
  8. Mather A., Cipra R.J., Siegmund T. Structural Integrity During Remanufacture of a Topologically Interlocked Material // Int. J. Struct. Integr. 2012. Vol. 3. No. 1. P. 61–78.
  9. Bayer J., Benzmúller C., Buzzard K., David M., Lamport L., Matiyasevich Y., Paulson L., Schleicher D., Stock B., Zelmanov E. Mathematical proof between generations. arXiv:2207.04779.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».