Существование и релаксация решений дифференциальных включений с максимально монотонными операторами и возмущениями

Обложка

Цитировать

Полный текст

Аннотация

В сепарабельном гильбертовом пространстве изучается дифференциальное включение с зависящим от времени максимально монотонным оператором и возмущением. Возмущение представляет сумму зависящего от времени однозначного оператора и многозначного отображения с замкнутыми невыпуклыми значениями. Особенностью однозначного оператора является то, что сумма его с тождественным оператором, умноженным на положительную интегрируемую с квадратом функцию, является монотонным оператором. Многозначное отображение обладает свойством липшицевости по фазовой переменной. Доказываются теоремы существования и плотности в соответствующей топологии множества решений исходного включения в множестве решений с овыпукленным многозначным отображением. Для этих целей введены новые расстояния между максимально монотонными операторами.

Об авторах

А. А. Толстоногов

Федеральное государственное бюджетное учреждение науки Институт динамики систем и теории управления имени В.М. Матросова Сибирского отделения Российской академии наук (ИДСТУ СО РАН)

Автор, ответственный за переписку.
Email: alexander.tolstonogov@gmail.com
Россия, Иркутск

Список литературы

  1. Vladimirov A.A. Nonstationary dissipative evolution equations in a Hilbert space // Nonlinear Anal. 1991. V. 17. P. 499–518. https://doi.org/10.1016/0362-546X(91)90061-5
  2. Azzam-Laouir D., Belhoula W., Castaing C., Monteiro Marques M.D.P. Perturbed evolution problems with absolutely continuous variation in time and applications // J. Fixed Point Theory. Appl. 2019. V. 21. 40. https://doi.org/10.1007/s11784-019-0666-2
  3. Azzam-Laouir D., Boutana Harid I. Mixed semicontinuous perturbation to an evolution problem with time-dependent maximal monotone operator // J. Nonlinear Convex Anal. 2019. V. 20. № 1. P. 35–92.
  4. Azzam-Laouir D., Belhoula W., Castaing C., Monteiro Marques M.D.P. Multivalued perturbation to evolution problems involving time dependent maximal monotone operators // Evolution Equations and Control Theory. 2019. V. 9. № 1. P. 219–254. https://doi.org/10.3934/eect.2020004
  5. Castaing Ch., Saidi S. Lipschitz perturbation to evolution inclusions driven by time-dependent maximal monotone operators // Topol. Math. Nonlinear Anal. 2021. V. 58. № 2. P. 677–712. https://doi.org/10.12775/TMNA.2021.012
  6. Tolstonogov A.A. Existence and relaxation of solutions for a subdifferential inclusion with unbounded perturbation // J. Math. Anal. Appl. 2017. V. 447. P. 269–288. https://doi.org/10.1016/j.jmaa.2016.09.061
  7. Tolstonogov A.A. Sweeping process with unbounded nonconvex perturbation // Nonlinear Analysis. 2014. V. 108. P. 291–301. https://doi.org/10.1016/j.na.2014.06.002
  8. Attouch H., Wets R.J.-B. Quantitative stability of variational systems. I: The epigraphical distance // Trans. Amer. Math. Soc. 1991. V. 328. № 2. P. 695–729. https://doi.org/10.2307/2001800

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© А.А. Толстоногов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».