ОПТИМИЗАЦИОННАЯ СПЕКТРАЛЬНАЯ ЗАДАЧА ДЛЯ ОПЕРАТОРА ШТУРМА–ЛИУВИЛЛЯ В ПРОСТРАНСТВЕ ВЕКТОР-ФУНКЦИЙ

Обложка
  • Авторы: Садовничий В.А.1,2, Султанаев Я.Т.3,4, Валеев Н.Ф.5
  • Учреждения:
    1. Московский государственный университет имени М.В. Ломоносова
    2. Московский центр фундаментальной и прикладной математики
    3. Башкирский государственный педагогический университет им. М. Акмуллы
    4. Московский центр фундаментальной и прикладной математики
    5. Институт математики с вычислительным центром Уфимского федерального исследовательского центра Российской академии наук
  • Выпуск: Том 513, № 1 (2023)
  • Страницы: 93-98
  • Раздел: МАТЕМАТИКА
  • URL: https://ogarev-online.ru/2686-9543/article/view/247074
  • DOI: https://doi.org/10.31857/S2686954323600477
  • EDN: https://elibrary.ru/GHJAMX
  • ID: 247074

Цитировать

Полный текст

Аннотация

Рассматривается обратная оптимизационная спектральная задача: для заданного матричного потенциала \({{Q}_{0}}(x)\) требуется найти ближайшую к нему матричную функцию \(\hat {Q}(x)\) такую, чтобы k-е собственное значение матричного оператора Штурма–Лиувилля с потенциалом \(\hat {Q}(x)\) совпадало с заданным числом \(\lambda {\kern 1pt} *\). Основной результат работы заключается в доказательстве теорем существования и единственности. Установлены явные формулы для оптимального потенциала через решения систем нелинейных дифференциальных уравнений второго порядка, известных в математической физике как системы нелинейных уравнений Шрёдингера.

Об авторах

В. А. Садовничий

Московский государственный университет
имени М.В. Ломоносова; Московский центр фундаментальной и прикладной математики

Автор, ответственный за переписку.
Email: info@rector.msu.ru
Россия, Москва

Я. Т. Султанаев

Башкирский государственный педагогический университет им. М. Акмуллы; Московский центр фундаментальной
и прикладной математики

Автор, ответственный за переписку.
Email: sultanaevyt@gmail.com
Россия, Уфа; Россия, Москва

Н. Ф. Валеев

Институт математики с вычислительным центром Уфимского федерального исследовательского центра Российской академии наук

Автор, ответственный за переписку.
Email: valeevnf@yandex.ru
Россия, Уфа

Список литературы

  1. Möller M., Zettl A. Differentiable dependence of eigenvalues of operators in Banach spaces, Journal of Operator Theory. 1996. P. 335–355.
  2. Pöschel J., Trubowitz E. Inverse spectral theory, volume 130 of Pure and Applied Mathematics, 1987.
  3. Yurko V.A. Inverse Spectral Problems and their Applications, Saratov, PI Press, 2001. 499 p.
  4. Chu M., Golub G.H. Inverse eigenvalue problems: theory, algorithms, and applications, Vol. 13. Oxford University Press, 2005.
  5. Gladwell G.M.L. Inverse Problems in Scattering: An Introduction, Kluwer Academic Publishers, 1993. https://doi.org/10.1007/978-94-011-2046-3
  6. Садовничий В.А., Султанаев Я.Т., Валеев Н.Ф. Многопараметрические обратные спектральные задачи и их приложения // Доклады академии наук. 2009. Т. 426. № 4. С. 457–460.
  7. Садовничий В.А., Султанаев Я.Т., Валеев Н.Ф. Оптимизационная обратная спектральная задача для векторного оператора Штурма–Лиувилля // Дифференциальные уравнения. 2022. Т. 58. № 12. С. 1707–1711.
  8. Ilyasov Y.Sh., Valeev N.F. On nonlinear boundary value problem corresponding to -dimensional inverse spectral problem // J. Diff. Eq. 2019. V. 266. № 8. P. 4533–4543. https://doi.org/10.1016/j.jde.2018.10.00310.1016/j.jde.2018.10.003
  9. Yavdat Ilyasov, Nur Valeev. Recovery of the nearest potential field from the m observed eigenvalues // Physica D: Nonlinear Phenomena. 2021. V. 426. 5 p. https://doi.org/10.1016/j.physd.2021.132985
  10. Egorov Y.V., Kondrat’ev V.A. Estimates for the first eigenvalue in some Sturm-Liouville problems // Russian Math. Surv. 1996. V. 51. № 3. P. 439.
  11. Wei Q., Meng G., Zhang M. Extremal values of eigenvalues of Sturm–Liouville operators with potentials in L1 balls // J. Diff. Eq. 2009. V. 247. № 2. P. 364–400.
  12. Shuyuan Guo, Zhang Meirong. A Variational Approach to the Optimal Locations of the Nodes of the Second Dirichlet Eigenfunctions. Mathematical Methods in the Applied Sciences. 2022. https://doi.org/10.1002/mma.8930
  13. Guo H., Qi J. Extremal norm for potentials of Sturm-Liouville eigenvalue problems with separated boundary conditions // EJDE. 2017. V. 99. P. 1–11. http://ejde.math.unt.edu
  14. Като Т. Теория возмущений линейных операторов. М.: Наука.1972. 740 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© В.А. Садовничий, Я.Т. Султанаев, Н.Ф. Валеев, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».