ORLICZ TYPE SPACES RELATED WITH NONLINEAR NONLOCAL FUNCTIONALS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In the work we introduce the Orlicz spaces on the base of nonlinear nonlocal functionals. We study the main properties of such spaces. We prove that these spaces are Banach, separable and the set of compactly supported infinitely differentiable functions is dense in these spaces. We describe the structure of dual spaces and obtain the representations for the linear functionals.

Sobre autores

D. Borisov

Institute of Mathematics, Ufa Federal Research Center, RAS; Peoples Friendship University of Russia (RUDN University); Bashkir State Pedagogical University named after M. Akhmulla

Email: borisovdi@yandex.ru
Ufa, Russia; Moscow, Russia; Ufa, Russia

A. Piatnitskii

The Arctic University of Norway, campus Narvik; Higher School of Modern Mathematics MIPT

Email: apiatnitski@gmail.com
Narvik, Norway; Moscow, Russia

Bibliografia

  1. Красносельский М.А., Рутицкий Я.Б. Выпуклые функции и пространства Орлича. М., Физматгиз. (1958).
  2. Alicandro R., Ansini N., Braides A., Piatnitski A., Tribuzio A. A Variational Theory of Convolution-Type Functionals. Springer, Singapore Pte Ltd. (2023).
  3. Diening L., Harjulehto P., Hа¨sto¨ P., Rouzˇicˇka M. Lebesgue and Sobolev Spaces with Variable Exponents. Heidelberg: Springer. (2011).
  4. Diening L. Maximal function on generalized Lebesgue spaces Lp() // Math. Inequal. Appl. 7:2, 245–253 (2004).
  5. Edmunds D., Rakosnik J. Density of smooth functions in Wk,p(x)(Ω) // Proc. R. Soc. Lond., Ser. A. 437:1899, 229–236 (1992).
  6. Fan X.-L. and Zhao D.Onthe spaces Lp(x)(Ω) and Wm,p(x)(Ω) // J. Math. Anal. Appl. 263:2, 424–446 (2001).
  7. Harjulehto P., Hа¨sto¨ P., Leˆ U´.V., Nuortio M. Overview of differential equations with non–standard growth // Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72:12, 4551–4574 (2010).
  8. Harjulehto P., Hа¨sto¨ P. Orlicz Spaces and Generalized Orlicz Spaces. Cham: Springer. (2019).
  9. Kondratiev Yu., Kutoviy O., Pirogov S. Correlation functions and invariant measures in continuous contact model // Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11:2, 231–258 (2008).
  10. Rao M.M., Ren Z.D. Theory of Orlicz Spaces. New York: Marcel Dekker. (1991).
  11. Kova´cik O. and Ra´kosnik J. On spaces Lp(x) and W1,p(x) // Czechoslovak Math. J. 41:116, 592–618 (1991).
  12. Ruzicka M. Electrorheological Fluids: Modeling and Mathematical Theory. Berlin: Springer-Verlag. (2000).
  13. Samko S. Denseness of C∞ 0 (RN) in the generalized Sobolev spaces WM,P(X)(RN) // In “Direct and Inverse Problems of Mathematical Physics”, Proc. ISAAC’97 Congress, Kluwer Acad. Publ., Dordrecht, 333–342 (2000).
  14. Zhikov V.V. Density of smooth functions in Sobolev-Orlicz Spaces // J. Math. Sci., New York. 132:3, 285–294 (2006).
  15. Zhikov V.V. On Lavrentiev’s phenomenon // Russ. J. Math. Phys. 3:2, 249–269 (1995).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).