Получение наночастиц на основе меди и никеля… методом магнетронного распыления и их использование в реакции активации связи сера–сера

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Настоящая работа посвящена систематическому исследованию преимуществ и ограничений метода магнетронного распыления, являющегося удобным и перспективным способом получения наноразмерных частиц напрямую из массы металла, при его использовании для приготовления наночастиц металлов первого переходного ряда. В ходе работы проведено варьирование сред для напыления на основе ионных жидкостей, эвтектических растворителей, низко- и высокомолекулярных органических соединений. Получены частицы меди, никеля, а также медно-никелевого и медно-цинкового сплавов. На примере реакции активации связи сера–сера в дифенилдисульфиде показано, что до 96% распыленной меди может быть эффективно использовано в катализе, тогда как в случае никеля и цинка порядка трех четвертей металла может выводиться из системы в неактивной форме, при этом легкоокисляемые компоненты могут выступать в качестве жертвенных стабилизаторов для частиц умеренно активных металлов в случае напыления двухкомпонентных сплавов.

Полный текст

Доступ закрыт

Об авторах

А. С. Кашин

Институт органической химии им. Н.Д. Зелинского Российской академии наук

Автор, ответственный за переписку.
Email: a.kashin@ioc.ac.ru
Россия, 119991, Москва

Список литературы

  1. Biffis A., Centomo P., Del Zotto A., Zecca M. // Chem. Rev. 2018. V. 118. № 4. P. 2249–2295. http s://doi.org/10.1021/acs.chemrev.7b00443
  2. Dalton T., Faber T., Glorius F. // ACS Cent. Sci. 2021. V. 7. № 2. P. 245–261. http s://doi.org/10.1021/acscentsci.0c01413
  3. Chan A.Y., Perry I.B., Bissonnette N.B., Buksh B.F., Edwards G.A., Frye L.I., Garry O.L., Lavagnino M.N., Li B.X., Liang Y., Mao E., Millet A., Oakley J.V., Reed N.L., Sakai H.A., Seath C.P., MacMillan D.W.C. // Chem. Rev. 2022. V. 122. № 2. P. 1485–1542. http s://doi.org/10.1021/acs.chemrev.1c00383
  4. Devendar P., Qu R.-Y., Kang W.-M., He B., Yang G.-F. // J. Agric. Food Chem. 2018. V. 66. № 34. P. 8914–8934. http s://doi.org/10.1021/acs.jafc.8b03792
  5. Hayler J.D., Leahy D.K., Simmons E.M. // Organometallics. 2019. V. 38. № 1. P. 36–46. http s://doi.org/10.1021/acs.organomet.8b00566
  6. Xia Y., Yang H., Campbell C.T. // Acc. Chem. Res. 2013. V. 46. № 8. P. 1671–1672. http s://doi.org/10.1021/ar400148q
  7. Xie C., Niu Z., Kim D., Li M., Yang P. // Chem. Rev. 2020. V. 120. № 2. P. 1184–1249. http s://doi.org/10.1021/acs.chemrev.9b00220
  8. Astruc D. // Chem. Rev. 2020. V. 120. № 2. P. 461–463. http s://doi.org/10.1021/acs.chemrev.8b00696
  9. Hong K., Sajjadi M., Suh J.M., Zhang K., Nasrollahzadeh M., Jang H.W., Varma R.S., Shokouhimehr M. // ACS Appl. Nano Mater. 2020. V. 3. № 3. P. 2070–2103. http s://doi.org/10.1021/acsanm.9b02017
  10. Ohtaka A. // Catalysts. 2021. V. 11. № 11. P. 1266. http s://doi.org/10.3390/catal11111266
  11. Cha J.-H., Park S.-M., Hong Y.K., Lee H., Kang J.W., Kim K.-S. // J. Nanosci. Nanotechnol. 2012. V. 12. № 4. P. 3641–3645. http s://doi.org/10.1166/jnn.2012.5590
  12. Cloud J.E., McCann K., Perera K.A.P., Yang Y. // Small. 2013. V. 9. № 15. P. 2532–2536. http s://doi.org/10.1002/smll.201202470
  13. Cloud J.E., Yoder T.S., Harvey N.K., Snow K., Yang Y. // Nanoscale. 2013. V. 5. № 16. P. 7368–7378. http s://doi.org/10.1039/c3nr02404k
  14. Sarcina L., García-Manrique P., Gutiérrez G., Ditaranto N., Cioffi N., Matos M., Blanco-López M.d.C. // Nanomaterials. 2020. V. 10. № 8. P. 1542. http s://doi.org/10.3390/nano10081542
  15. Zhang J., Chaker M., Ma D. // J. Colloid Interface Sci. 2017. V. 489. P. 138–149. http s://doi.org/10.1016/j.jcis.2016.07.050
  16. Jiang Z., Li L., Huang H., He W., Ming W. // Int. J. Mol. Sci. 2022. V. 23. № 23. P. 14658. http s://doi.org/10.3390/ijms232314658
  17. Balachandran A., Sreenilayam S.P., Madanan K., Thomas S., Brabazon D. // Results Eng. 2022. V. 16. P. 100646. http s://doi.org/10.1016/j.rineng.2022.100646
  18. Nyabadza A., Vazquez M., Brabazon D. // Crystals. 2023. V. 13. № 2. P. 253. http s://doi.org/10.3390/cryst13020253
  19. Wender H., Migowski P., Feil A.F., Teixeira S.R., Dupont J. // Coord. Chem. Rev. 2013. V. 257. № 17–18. P. 2468–2483. http s://doi.org/10.1016/j.ccr.2013.01.013
  20. Cha I.Y., Yoo S.J., Jang J.H. // J. Electrochem. Sci. Technol. 2016. V. 7. № 1. P. 13–26. http s://doi.org/10.5229/JECST.2016.7.1.19
  21. Qadir M.I., Kauling A., Ebeling G., Fartmann M., Grehl T., Dupont J. // Aust. J. Chem. 2019. V. 72. № 2. P. 49–54. http s://doi.org/10.1071/CH18183
  22. Cano I., Weilhard A., Martin C., Pinto J., Lodge R.W., Santos A.R., Rance G.A., Åhlgren E.H., Jónsson E., Yuan J., Li Z.Y., Licence P., Khlobystov A.N., Alves Fernandes J. // Nat. Commun. 2021. V. 12. P. 4965. http s://doi.org/10.1038/s41467-021-25263-6
  23. Nguyen M.T., Deng L., Yonezawa T. // Soft Matter. 2022. V. 18. № 1. P. 19–47. http s://doi.org/10.1039/D1SM01002F
  24. Hirano M., Enokida K., Okazaki K.-i., Kuwabata S., Yoshida H., Torimoto T. // Phys. Chem. Chem. Phys. 2013. V. 15. № 19. P. 7286–7294. http s://doi.org/10.1039/c3cp50816a
  25. Zhou Y.-Y., Liu C.-H., Liu J., Cai X.-L., Lu Y., Zhang H., Sun X.-H., Wang S.-D. // Nano-Micro Lett. 2016. V. 8. № 4. P. 371–380. http s://doi.org/10.1007/s40820-016-0096-2
  26. Liu C., Cai X., Wang J., Liu J., Riese A., Chen Z., Sun X., Wang S.-D. // Int. J. Hydrogen Energy. 2016. V. 41. № 31. P. 13476–13484. http s://doi.org/10.1016/j.ijhydene.2016.05.194
  27. Sriram P., Kumar M.K., Selvi G.T., Jha N.S., Mohanapriya N., Jha S.K. // Electrochim. Acta. 2019. V. 323. P. 134809. http s://doi.org/10.1016/j.electacta.2019.134809
  28. Tsuda T., Yoshii K., Torimoto T., Kuwabata S. // J. Power Sources. 2010. V. 195. № 18. P. 5980–5985. http s://doi.org/10.1016/j.jpowsour.2009.11.027
  29. Cha I.Y., Ahn M., Yoo S.J., Sung Y.-E. // RSC Adv. 2014. V. 4. № 73. P. 38575–38580. http s://doi.org/10.1039/C4RA05213G
  30. Zhu M., Nguyen M.T., Sim W.J., Yonezawa T. // Mater. Adv. 2022. V. 3. № 24. P. 8967–8976. http s://doi.org/10.1039/D2MA00688J
  31. Chung M.W., Cha I.Y., Ha M.G., Na Y., Hwang J., Ham H.C., Kim H.-J., Henkensmeier D., Yoo S.J., Kim J.Y., Lee S.Y., Park H.S., Jang J.H. // Appl. Catal. B: Environ. 2018. V. 237. P. 673–680. http s://doi.org/10.1016/j.apcatb.2018.06.022
  32. Oda Y., Hirano K., Yoshii K., Kuwabata S., Torimoto T., Miura M. // Chem. Lett. 2010. V. 39. № 10. P. 1069–1071. http s://doi.org/10.1246/cl.2010.1069
  33. Luza L., Gual A., Eberhardt D., Teixeira S.R., Chiaro S.S.X., Dupont J. // ChemCatChem. 2013. V. 5. № 8. P. 2471–2478. http s://doi.org/10.1002/cctc.201300123
  34. Chang J.-B., Liu C.-H., Liu J., Zhou Y.-Y., Gao X., Wang S.-D. // Nano-Micro Lett. 2015. V. 7. № 3. P. 307–315. http s://doi.org/10.1007/s40820-015-0044-6
  35. Liu C.-H., Liu J., Zhou Y.-Y., Cai X.-L., Lu Y., Gao X., Wang S.-D. // Carbon. 2015. V. 94. P. 295–300. http s://doi.org/10.1016/j.carbon.2015.07.003
  36. Kashin A.S., Prima D.O., Arkhipova D.M., Ananikov V.P. // Small. 2023. V. 19. № 43. P. 2302999. http s://doi.org/10.1002/smll.202302999
  37. Lee C.-F., Liu Y.-C., Badsara S.S. // Chem. – Asian J. 2014. V. 9. № 3. P. 706–722. http s://doi.org/10.1002/asia.201301500
  38. Lee C.-F., Basha R.S., Badsara S.S. // Top. Curr. Chem. 2018. V. 376. № 3. P. 25. http s://doi.org/10.1007/s41061-018-0203-6
  39. Beletskaya I.P., Ananikov V.P. // Chem. Rev. 2022. V. 122. № 21. P. 16110–16293. http s://doi.org/10.1021/acs.chemrev.1c00836
  40. Kashin A.S., Arkhipova D.M., Sahharova L.T., Burykina J.V., Ananikov V.P. // ACS Catal. 2024. V. 14. № 8. P. 5804–5816. http s://doi.org/10.1021/acscatal.3c06258

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. таблица1

Скачать (117KB)
3. Рис. 1. (а) Принципиальная схема устройства магнетронного распыления. M(0) – металл в нулевой степени окисления. (б) Жидкие вещества, использованные в качестве среды. Красным цветом отмечены жидкости, совместимые с вакуумом камеры для напыления, но взаимодействующие с распыляемыми частицами; зеленым – инертные устойчивые среды, пригодные для использования в синтезе наночастиц.

Скачать (185KB)
4. Рис. 2. Энергодисперсионные рентгеновские спектры в диапазонах 2–3 кэВ и 7–10 кэВ для образцов металлсодержащей фазы, выделенной после реакции между дифенилдисульфидом и частицами меди (черная кривая), никеля (красная кривая), медно-никелевого сплава (синяя кривая) или медно-цинкового сплава (зеленая кривая) в среде пиридиниевой ионной жидкости.

Скачать (126KB)
5. Рис. 3. СПЭМ-изображения частиц меди и медно-цинкового сплава в среде пиридиниевой ионной жидкости (а) и (г) и соответствующие гистограммы распределения частиц по размерам (б) и (д); СПЭМ-изображения реакционных смесей, полученных после обработки частиц меди и медно-цинкового сплава дифенилдисульфидом в среде ионной жидкости (в) и (е).

Скачать (297KB)

Примечание

Представлено академиком РАН В.П. Ананиковым


© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».