= химия ==

УДК 542.8

ПЕРОВСКИТОПОДОБНЫЙ ОГРАНИЧЕННЫЙ ТВЕРДЫЙ РАСТВОР В СИСТЕМЕ ВаО-Y₂O₃-CuO-M₀O₃

© 2024 г. М. Н. Смирнова^{1,*}, М. А. Копьева¹, Г. Д. Нипан¹, Г. Е. Никифорова¹, А. Д. Япрынцев¹, А. А. Архипенко¹

Представлено академиком Ю.Г. Горбуновой 28.08.2023 г. Поступило 30.08.2023 г. После доработки 09.01.2024 г. Принято к публикации 16.01.2024 г.

В квазичетверной системе ${\rm BaO-CuO-Y_2O_3-MoO_3}$ получена новая фаза ${\rm Ba_2(Y,Cu,Mo)_2O_6}$ со структурой кубического перовскита ${\it Fm-3m}$ и установлена возможность совместного существования двух ограниченных твердых растворов с кубическими структурами ${\it Fm-3m}$ и ${\it F-43m}$. Образцы синтезировали методом сжигания геля с последующим прокаливанием при $1000^{\circ}{\rm C}$ и охлаждением в инерционно-термическом режиме. Исследования проводили методами рентгенофазового анализа, рентгенофлуоресцентной спектрометрии, инфракрасной спектроскопии и спектроскопии диффузного отражения.

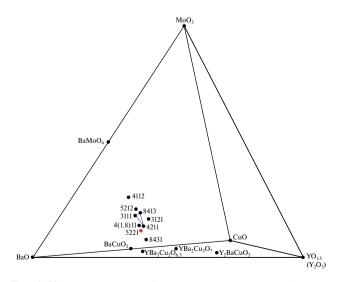
Ключевые слова: многокомпонентные оксидные системы, фазовые состояния

DOI: 10.31857/S2686953524020032 EDN: ZSAJRL

Химический формализм для обозначения сложных оксидов металлов с общей формулой АВО, зачастую является причиной описания этих соединений в рамках перовскитной структуры СаТіО, хотя кристаллические фазы АВО, могут иметь не только кубическую элементарную ячейку, но и тетрагональную, орторомбическую или ромбоэдрическую. Более того, благодаря деформации кубической ячейки АВО, перовскиты способны выступать в качестве сегнетоэлектриков, мультиферроиков, сверхпроводников и электродов топливных элементов [1]. В идеализированном случае число больших катионов A_i, для которых $\sum x_i Z_i = 2$ (x_i и Z_i — доля и заряд катиона і соответственно), тождественно числу маленьких катионов B_i с $\sum x_i Z_i = 4$ (x_i и Z_i доля и заряд катиона *j* соответственно), но если в позиции А обычно присутствуют не более двух разноименных катионов (щелочной, щелочноземельный, лантаноид, Pb^{2+} или Bi^{3+}) [2], то в позиции В может находиться до шести катионов (например, Mg^{2+} , Sc^{3+} , Ti^{4+} , Sn^{4+} , Nb^{5+} , W^{6+} [3]). Отдельные катионы (например, Ү³+) способны занимать обе позиции, и тогда составу перов-

При поиске высокотемпературных сверхпроводящих фаз в системе ВаО-Y₂O₃-CuO-WO₃ Bokhimi и соавт. обнаружили кубическую перовскитоподобную фазу Ва, УСи, WO, [4], однако на дифрактограмме присутствовали дополнительные пики, которые не могли быть отнесены к структуре с пространственной группой Fm-3m. Позднее Kitahama и соавт. определили, что структура $Ba_{2}YCu_{2}WO_{9-\nu}$ относится к пространственной группе F-43m [5]. В дальнейшем выяснилось, что при изменении исходного соотношения иттрия и меди образуется кубический твердый раствор с общей формулой Ва, Y, , , , Си, WO, , однофазный в двух концентрационных интервалах, для которых с увеличением содержания Си уменьшается параметр кубической решетки *a*: при $0 \le x \le 0.25$ (с граничным составом $Ba_{s}Y_{3}CuW_{4}O_{34}$) существует твердый раствор со структурой Pm3m [6], а при $0.4 \le x \le 0.6$ (базовая структура Ва₄ YCuW₂O₁₂) образуется кубический перовскит со структурой Fm-3m [6, 7]. В резуль-

скита в концентрационном треугольнике квазитройной системы $AO-Y_2O_3-BO_3$ соответствует область гомогенности, а в случае квазичетверной системы $AO-Y_2O_3-B'O-B''O_3$ в тетраэдре составов возникает однофазный объем, который удобно представить с помощью многогранного полиэдра.


¹ Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук, 119991 Москва, Россия

^{*}E-mail: smirnova_macha1989@mail.ru

тате изучения гомогенного ряда $Ba_2Y_zCu_xW_{1-x}O_6$ ($0.2 \le x \le 0.5, 2/3 \le z \le 1$) для наиболее изученного перовскита $Ba_2YCu_{0.25}W_{0.75}O_6$ ($Ba_8Y_4CuW_3O_{24}$) была выявлена возможность образования вакансий в В-позициях перовскита [8], а также способность перемещения иттрия из В-позиций в А-позиции [9], что свидетельствует о существовании объема гомогенности перовскита в концентрационном пространстве системы $BaO-Y_2O_3-CuO-WO_3$ [10].

Система BaO— Y_2O_3 —CuO—MoO $_3$, в отличие от BaO— Y_2O_3 —CuO—WO $_3$, практически не исследована. Сообщается, что при поиске высокотепературной сверхпроводящей керамики методом твердофазного синтеза (прекурсоры Y_2O_3 , BaCO $_3$, CuO и MoO $_3$) был получен образец состава Ba $_2$.5 YCu $_0$.5 MoO $_7$.5 с гранецентрированной кубической решеткой *Fm-3m* перовскита и параметром элементарной ячейки a=0.83656 нм. В результате приведения исходного состава к идеализированному смешанному перовскиту A_2 BB'O $_3$ авторы получили молекулярную формулу Ba $_2$ (Y_0 6 Cu $_0$ 4)(Y_0 7 Mo $_0$ 8)O $_6$ [11].

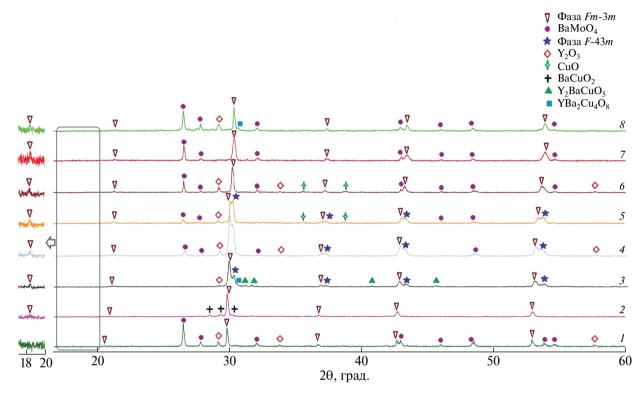
В настоящей работе изучена возможность получения многокомпонентного кубического перовскита в системе $BaO-Y_2O_3-CuO-MoO_3$ при синтезе методом сжигании геля. Составы, представленные на рис. 1 фигуративными точками в концентрационном тетраэдре квазичетверной системы $BaO-Y_2O_3-CuO-MoO_3$, исследованы методом рентгеновской дифракции. Проанализированы оптические свойства отдельных образцов в $Y\Phi$ /видимом и II-диапазонах.

Рис. 1. Концентрационный тетраэдр квазичетверной системы $BaO-Y_2O_3-CuO-MoO_3$ с исследованными составами.

Образцы системы $BaO-Y_2O_3-CuO-MoO_3$ синтезировали методом сжигания геля, в качестве исходных реагентов использовали CuO (99.98%) и MoO_3 (99%), предварительно прокаленные при 400° C, $BaCO_3$ (99.95%) и $Y_2(CO_3)_3$ · $3H_2O$ (99.8%), поливиниловый спирт (ΠBC) (16/1, CAS 9002-89-5), выполнявший функцию восстановителя ("органического топлива"), а также азотную кислоту квалификации "ос. ч." (70 мас. % HNO_3).

Оксиды металлов, карбонаты иттрия и бария, взятые в необходимых стехиометрических количествах, растворяли в разбавленной азотной кислоте (HNO, : $H_2O = 1 : 1$ (об.)), полученный раствор упаривали, переносили в керамическую чашку и добавляли порошкообразный ПВС. При дальнейшем обезвоживании раствора образовывался гель. После кратковременного возгорания гель превращался в серо-черный порошок, который перетирали, переносили в керамический тигель, отжигали при 1000°C в течение трех часов во избежание сублимации оксидов молибдена [12], приводящей к неконтролируемому изменению состава образцов при более продолжительных отжигах. Охлаждение проводили в инерционно-термическом режиме, не вынимая из печи.

Тестовые варианты термической обработки образцов проводились при температурах 900—1400°С для выбора оптимальных условий синтеза.


Содержание Ва, Y, Cu и Мо в синтезированных образцах контролировали методом рентгенофлуоресцентной спектрометрии на спектрометре СПЕКТРОСКАН МАКС-GVМ (Россия). Результаты исследования образцов с соотношением Ва: Y: Cu: Мо = 4:2:1:1 и 5:2:2:1, представленные в табл. 1 (данные получены с использованием метода фундаментальных параметров без учета элементов легче натрия), свидетельствуют о соответствии соотношения Ва, Y, Cu и Мо в конечном продукте исходному заданному составу. Относительная погрешность определения составила не более 5%.

Рентгенофазовый анализ (**РФA**) выполняли на дифрактометре Bruker Advance D8 (США) (излучение CuK_{α}) в интервале углов $2\theta = 10^{\circ}-70^{\circ}$ с шагом сканирования 0.0133°. Количественный фазовый анализ проводили методом полнопрофильного анализа с использованием программного обеспечения TOPAS 4.2.

На рис. 2 приведены дифрактограммы образцов системы $BaO-Y_2O_3-CuO-MoO_3$ с исходными соотношениями катионов металлов

Элемент	Массовое соотношение, %						
	Ba ₄ Y ₂ C	uMoO ₁₁	$Ba_5Y_2Cu_2MoO_{13}$				
	Теоретическое	Эксперимент	Теоретическое	Эксперимент			
Ba	61.9	61.4	63.1	64.7			
Y	20.1	20.4	16.4	15.5			
Cu	7.2	7.3	11.7	11.3			
Mo	10.8	10.9	8.8	8.5			

Таблица 1. Содержание элементов в образцах $Ba_4Y_2CuMoO_{11}$ и $Ba_5Y_2Cu_2MoO_{13}$

Рис. 2. Рентгенограммы образцов системы BaO $-Y_2O_3-CuO-MoO_3$: Ba $_5Y_2CuMo_2O_{15}$ (**5212**) (*I*), Ba $_5Y_2Cu_2MoO_{13}$ (**5221**) (*2*), Ba $_4Y_2CuMoO_{11}$ (**4211**) (*3*), Ba $_8Y_4CuMo_3O_{24}$ (**8413**) (*4*), Ba $_3YCuMoO_{8.5}$ (**3111**) (*5*), Ba $_3YCu_2MoO_{9.5}$ (**3121**) (*6*), Ba $_4YCuMo_2O_{12.5}$ (**4112**) (*7*), Ba $_4Y_{1.8}CuMoO_{10.7}$ (**4(1.8)11**) (*8*).

Ba: Y: Cu: Mo – 4112, 5212, 3111, 3121, 5221, 4211, 4(1.8)11, 8413.

Образец **4112** ($Ba_4YCuMo_2O_{12.5}$), в отличие от $Ba_4YCuW_2O_{12}$ [7], оказался неоднофазным (рис. 2, рентгенограмма 7) и, наряду с перовскитом с кубической структурой, в нем присутствовали $BaMoO_4$ и в небольшом количестве Y_2BaCuO_5 . Значительно снизить содержание $BaMoO_4$ удалось для состава **3111** ($Ba_3YCuMoO_{8.5}$), однако в этом случае в образце образуются примеси Y_2O_3 и CuO наряду с кубической фазой (рис. 2, рентгенограмма 5), изоструктурной $Ba_2YCu_2WO_9$ [5]. Сосуществование двух фаз с кубической структурой также выявлено при совместном

уменьшении концентрации Ва и Си в образце $Ba_2YCu_{0.5}Mo_{0.5}O_{5.5}$ (**4211**, $Ba_4Y_2CuMoO_{11}$), который содержал примеси Y_2O_3 , $YBa_2Cu_4O_8$ и Y_2BaCuO_5 (рис. 2, рентгенограмма 3). Образец номинального состава $Ba_{2.5}YCu_{0.5}MoO_{7.5}$ (**5212**, $Ba_5Y_2CuMo_2O_{15}$), в отличие от результатов работы [11], не был однофазным, и в нем обнаружены примесные $BaMoO_4$ и Y_2O_3 (рис. 2, рентгенограмма 1). При эквимолярном уменьшении содержания Ва и Мо получен образец $Ba_{2.5}YCuMo_{0.5}O_{6.5}$ (**5221**, $Ba_5Y_2Cu_2MoO_{13}$) с максимальным содержанием перовскитоподобной фазы и примесью $BaCuO_2$ (рис. 2, рентгенограмма 2).

Дальнейшее варьирование концентраций катионовметаллов, вчастностидобавление Си, при-

водило к увеличению содержания примесей Y_2O_3 и CuO в образце состава **3121** (Ва $_3$ YCu $_2$ MoO $_{9.5}$) (рис. 2, рентгенограмма δ). Незначительное снижение содержания иттрия приводило к образованию смеси: перовскит, ВаМоО $_4$ и Y_2O_3 для образца **4(1.8)11** (Ва $_4$ Y $_{1.8}$ CuMoO $_{10.7}$) (рис. 2, рентгенограмма δ). В случае изменения соотношения Cu: Мо (подобно тому, как это было сделано для Ва $_2$ YCu $_{0.25}$ Wo $_{0.75}$ O $_6$ (Ва $_8$ Y $_4$ CuW $_3$ O $_2$ 4) [8]) в образце Ва $_2$ YCu $_{0.25}$ Mo $_{0.75}$ O $_6$ (**8413**, Ва $_8$ Y $_4$ CuMo $_3$ O $_2$ 4) обнаружены две фазы с кубической структурой, а также зафиксированы примеси ВаМоО $_4$ и Y_2 O $_3$ (рис. 2, рентгенограмма δ).

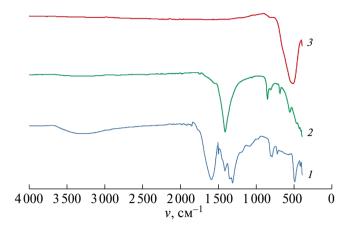
В табл. 2 представлены результаты рентгенофазового анализа синтезированных образцов. Состав **5221** ($Ba_5Y_2Cu_2MoO_{13}$), содержащий максимальное количество перовскитоподобной фазы Fm-3m, отмечен на рис. 1 красной точкой. Для этого образца профильный фактор $R_p = 7.55\%$ и взвешенный профильный фактор $R_{wp} = 9.48\%$.

Данные РФА показывают, что перовскитоподобная кубическая фаза Fm-3m в системе $BaO-Y_2O_3-CuO-MoO_3$ обладает областью

гомогенности, о чем свидетельствует изменение параметра кубической решетки. Параметр элементарной ячейки, рассчитанный по данным рентгеновской дифракции методом полнопрофильного анализа, варьируется в интервале 8.3315—8.4720 Å в зависимости от состава (табл. 3).

В образцах номинального состава 8413, 4211 и 3111 перовскитоподобная фаза Fm-3m существует совместно с кубической фазой F-43m, изоструктурной $Ba_2YCu_2WO_9$ [5]. На рис. 1 тонкими линиями соединены составы, для которых обнаружены обе фазы, при этом общее содержание фаз Fm-3m и F-43m в образцах составляет 80-90%.

ИК-спектры регистрировали на спектрометре Perkin Elmer Spectrum 65 FT-IR (США) в области $4000-400~{\rm cm^{-1}}$ с разрешением $2~{\rm cm^{-1}}$. На рис. 3 представлены ИК-спектры для ${\rm Ba_5Y_2Cu_2MoO_{13}}$.


ИК-спектр геля, отобранного перед возгоранием (рис. 3, спектр I), содержит широкую полосу поглощения с максимумом при 3314 см $^{-1}$, отвечающую валентным колебаниям ОН-групп, и

Tawinga 2. Pasobbin coctab oopasgob cuctemb bao-1203-cuo-moo3								
Состав	Fm-3m	Y_2O_3	BaMoO ₄	Ba ₂ YCu ₂ WO ₉	CuO	Y ₂ BaCuO ₅	YBa ₂ Cu ₄ O ₈	BaCuO ₂
		<i>Ia-3</i>	$I4_{1}/a$	F-43m	C2/c	Pbnm	Ammm	Im-3m
4112	69.4		28	_		2.6	_	_
3111	39	4.7	5.4	47.4	3.5	_	_	_
4211	52	1.2		24.8	-	16	6	_
5212	36.2	14.1	49.7	_	-	_	_	_
5221	74	-	_	_	–	_	_	26
3121	58.2	13.5	17.4	_	10.9	_	_	_
4(1.8)11	43	18.3	38.7	_	-	_	_	_
Q/13	12	6.1	6.2	15.7				

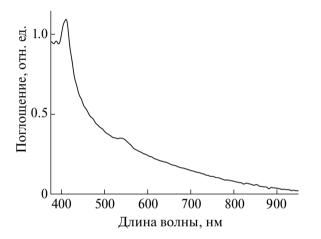

Таблица 2. Фазовый состав образцов системы BaO-Y₂O₃-CuO-MoO.

Таблица 3. Параметры кубических ячеек твердых растворов структурных типов *Fm-3m и F-43m*

Состав	Fm-3m			F-43m		
	Содержание, %	a, Å	V, Å ³	Содержание, %	a, Á	V, Å ³
4112	69.4	8.3372	579.52	_	_	_
3111	39	8.4001	592.71	47.4	8.3505	582.29
4211	52	8.4488	603.10	24.8	8.3571	583.68
5212	36.2	8.4720	608.07	_	_	_
5221	74	8.4703	607.70	_	_	_
3121	58.2	8.3686	586.08	_	_	_
4(1.8)11	43	8.3315	578.32	_	_	_
8413	42	8.4432	601.90	45.7	8.3801	588.51

Рис. 3. ИК-спектры образца **5221** ($Ba_5Y_2Cu_2MoO_{13}$): гель (спектр *I*); аморфный порошок до отжига (спектр *2*), после отжига (спектр *3*).

Рис. 4. Спектр поглощения образца **5221** ($Ba_5Y_2Cu_2MoO_{13}$) в УФ/видимом диапазоне.

интенсивную полосу поглощения при 1590 см $^{-1}$, соответствующую валентным колебаниям С=С связи [13]. Полоса при 1417 см $^{-1}$ соответствует асимметричным валентным колебаниям С—О-связи [14], а при 1200 и 1084 см $^{-1}$ — колебаниям группы С—О—С [15]. Наличие в спектре асимметричных и симметричных валентных колебаний связи N=O при 1503 и 1315 см $^{-1}$ [16], наряду с валентными колебаниями связи N=O при 1360 см $^{-1}$ [17], свидетельствует о присутствии в геле анионов NO $_3$. В низкочастотной области спектра присутствует ряд полос, обусловленных связями Мо—О: 997 см $^{-1}$ (Мо=О) [18], 796 и 421см $^{-1}$ (МоО $_4$ $^{-1}$) [19], 726 см $^{-1}$ (Мо—О) [18], 576 и 497 см $^{-1}$ (Мо—О—Мо) [18].

В ИК-спектре порошка $Ba_5Y_2Cu_2MoO_{13}$, полученного после сжигания геля (рис. 3, спектр 2), наряду с полосами 800, 727 и 560 см⁻¹, относящимся к колебаниям связей Mo=O, Mo-O и

Мо–О—Мо соответственно, присутствуют полосы поглощения, характерные для карбонатных групп: асимметричные валентные колебания связи С—О при 1414 cm^{-1} и деформационные колебания группы CO_3^{2-} при 856 и 691 cm^{-1} [14].

Отжиг при 1100° С приводит к появлению на ИК-спектре образца **5221** (Ва₅Y₂Cu₂MoO₁₃) интенсивной полосы поглощения с экстремумом при 517 см⁻¹ и плечом в области 780-830 см⁻¹ (рис. 3, спектр *3*), которые можно соотнести с валентными колебаниям связи Мо—О в октаэдре МоО₄ и тетраэдре МоО₄ [20].

Спектры диффузного отражения в диапазоне 200—1000 нм регистрировали с помощью модульной оптической системы Ocean Optics (дейтериево-галогеновый источник DH-2000-BAL, интегрирующая сфера ISP-80-8-R диаметром 80 мм, детектор QE650000) (США). В качестве образца сравнения использовали стандарт WS-1 (Ocean Optics) из политетрафторэтилена.

Результаты исследования оптических свойств образца **5221** ($Ba_5Y_2Cu_2MoO_{13}$) в УФ/видимом диапазоне спектра (рис. 4) обработаны с помощью функции Кубелки—Мунка, которую можно считать прямо пропорциональной поглощению, пренебрегая наличием сильного рассеяния или пропускания света образцами.

На спектре поглощения образца номинального состава **5221** (Ва₅Y₂Cu₂MoO₁₂) (рис. 4) можно выделить две узких полосы с максимумами при 420 и 550 нм. Эти полосы могут соответствовать переносу заряда $O^{2-} \rightarrow Cu^{2+}$ [21] для позиций Си²⁺ в различном кислородном окружении. Это хорошо согласуется с неоднофазностью образца Ва У Си МоО в котором присутствуют перовскит $Ba_{2}(Y,Cu,Mo)_{2}O_{6}$ (*Fm-3m*) и купрат бария ВаСиО₂. Интенсивной полосе с максимумом при 420 нм можно отнести поглощение позициями Си²⁺ в октаэдрическом кислородном окружении перовскита, а малоинтенсивной полосе с максимумом 550 нм — поглощение позициями Cu^{2+} в плоско-квадратном кислородном окружении ВаСиО, [22]. Таким образом, данные диффузного отражения подтверждают формирование фазы перовскита, содержащей октаэдрические позиции меди.

ЗАКЛЮЧЕНИЕ

Методом сжигания геля впервые в системе $BaO-Y_2O_3-CuO-MoO_3$ экспериментально получен ограниченный твердый раствор со структурой перовскита Fm-3m. При варьировании соотношения Ba:Y:Cu:Mo установлена область совместного существования фазы перовскита

Fm-3m с кубической фазой F-43m, изоструктурной $Ba_2YCu_2WO_9$. Анализ спектров диффузного отражения указывает на наличие кислородных полиэдров для Cu^{2+} с координационным числом 6, что характерно для кристаллической решетки перовскита.

БЛАГОДАРНОСТЬ

Исследование проводилось с использованием оборудования ЦКП ФМИ ИОНХ РАН.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена при финансовой поддержке Минобрнауки России в рамках государственного залания ИОНХ РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Gupta S.* Introduction of ferroelectric and related materials. In: Ferroelectric materials for energy harvesting and storage. Elsevier, 2021. pp. 1–41. https://doi.org/10.1016/B978-0-08-102802-5.00001-7
- 2. *Кузьминов Ю.С., Осико В.В., Прохоров А.М.* // Квантовая электроника. 1980. Т. 7. № 8. С. 1621—1653.
- Леманов В.В., Смирнова Е.П., Зайцева Н.П. // Физика тв. тела. 2009. Т. 51. № 8. С. 1590—1595.
- 4. *Bokhimi X.*, *Garcia-Ruiz A.* // Mater. Res. Soc. Symp. Proc. 1989. V. 169. P. 233–236. https://doi.org/10.1557/PROC-169-233
- 5. *Kitahama K., Hori Y., Kawai K., Kawai S.* // Jap. J. Appl. Phys. 1991. V. 30. № 5A. P. L809—L812. https://doi.org/10.1143/JJAP.30.L809
- 6. *Garcia-Ruiz A., Bokhimi X., Portilla M. //*J. Mater. Res. 1992. V. 7. № 1. P. 24–28. https://doi.org/10.1557/JMR.1992.0024
- 7. *Bryntse I.* // Acta Chem. Scand. 1990. V. 44. P. 855–856. https://doi.org/10.3891/acta.chem.scand.44-0855
- 8. *Bokhimi X., Morales A., Garcia-Ruiz A. //*Powder Diffraction. 1996. V. 11. № 1. P. 42–44. https://doi.org/10.1017/S0885715600008903

- 9. *Bremer M., Langbein H.* // Eur. J. Solid State Inorg. Chem. 1996. V. 33. № 11. P. 1173–1183. https://doi.org/10.1016/S1293-2558(00)80085-0
- 10. *Кольцова Т.Н.* // Неорган. материалы. 2004. Т. 40. № 6. С. 751–755.
- 11. *Gu L.-N.*, *Li R.-K.*, *Chen Z.-Y.*, *Zhang J.-W.* // Chinese J. Low. Temp. Phys. 2000. V. 22. № 1. P. 77–80. https://doi.org/10.3969/j.issn.1000-3258.2000.01.015
- Казенас Е.К., Цветков Ю.В. // Испарение оксидов. М: Наука, 1997. 543 с.
- 13. *Thomas P.S.*, *Guerbois J.-P.*, *Russell G.F.*, *Briscoe B.J.* // J. Therm. Anal. Calorim. 2001. V. 64. № 2. P. 501–508. https://doi.org/10.1023/A:1011578514047
- 14. Sreedhar B., Satya Vani Ch., Keerthi Devi D., Basaveswara Rao M.V., Rambabu C. // Amer. J. Mater. Sci. 2012. V. 2. № 1. P. 5–13. https://doi.org/10.5923/j.materials.20120201.02
- 15. *Mansur H.S., Sadahira C.M., Souza A.N., Mansur A.A.P.* // Mater. Sci. Eng. C. 2008. V. 28. № 4. P. 539–548. http://.doi.org/10.1016/j.msec.2007.10.088
- 16. *Smirnova M.N.*, *Nikiforova G.E.*, *Goeva L.V.*, *Simonen-ko N.P.*// Ceram. Intern. 2019. V. 45. № 4. P. 4509—4513. https://doi.org/10.1016/j.ceramint.2018.11.133
- 17. *Lei F., Yan B.* // *J.* Solid State Chem. 2008. V. 181. № 4. P. 855–862. https://doi.org/10.1016/j.jssc.2008.01.033
- 18. Gowtham B., Ponnuswamy V., Pradeesh G., Chandrasekaren J., Aradhana D. // J. Mater. Sci. Mater. Electron. 2018. V. 29. № 8. P. 6835–6843. https://doi.org/10.1007/s10854-018-8670-7
- 19. *Yang P., Li C., Wang W., Quan Z., Gai S., Lin J. //* J. Solid State Chem. 2009. V. 182. № 9. P. 2510–2520. https://doi.org/10.1016/j.jssc.2009.07.009
- 20. Фомичев В.В., Полозникова М.Э., Кондратов О.И. // Успехи химии. 1992. Т. 61. № 9. С. 1601—1622. https://doi.org/10.1070/RC1992v061n09ABEH001004
- 21. Buvaneswari G., Aswathy V., Rajakumari R. //
 Dyes Pigments. 2015. V. 123. P. 413–419.
 https://doi.org/10.1016/j.dyepig.2015.08.024
- 22. *Paulus E.F., Miehe G., Fuess H., Yehia I., Löchner U. //*J. Solid State Chem. 1991. V. 90. № 1. P. 17–26. https://doi.org/10.1016/0022-4596(91)90166-F

PEROVSKITE-LIKE LIMITED SOLID SOLUTION IN THE BaO-Y₂O₃-CuO-MoO₃ SYSTEM

M. N. Smirnova^{a,#}, M. A. Kopeva^a, G. D. Nipan^a, G. E. Nikiforova^a, A. D. Yapryntsev^a, A. A. Archipenko^a

Presented by Academician of the RAS Yu.G. Gorbunova 28.08.2023.

^a Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russian Federation

[#]E-mail: smirnova macha1989@mail.ru

A new phase $Ba_2(Y,Cu,Mo)_2O_6$ with the cubic perovskite structure Fm3m has been obtained in the $BaO-CuO-Y_2O_3-MoO_3$ quasiquaternary system, and the possibility of coexistence of two limited solid solutions with cubic structures Fm-3m and F-43m has been established. The samples were synthesized by gel combustion followed by calcination at $1000^{\circ}C$ and cooling in the inertial thermal regime. The studies were carried out by X-ray phase analysis, X-ray fluorescence spectrometry, infrared spectroscopy, and diffuse reflectance spectroscopy.

Keywords: multicomponent oxide systems, phase states