О влиянии пространственной неоднородности температуры поверхности океана в области апвеллинга на касательное напряжение трения ветра

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Проанализировано влияние горизонтально-неоднородного поля температуры поверхности океан (ТПО) в окрестности прибрежного апвеллинга (относящегося к Восточным пограничнымапвеллинговым системам) на региональные характеристики поля касательного напряжения трения ветра. Показано, что изменение турбулентного режима приводного пограничного слоя атмосферы при переходе от области апвеллинга с относительно низкой ТПО к более тёплой оффшорной зоне, является главным механизмом, определяющим влияние пространственной неоднородности ТПО в окрестности апвеллинга на касательное напряжение трения ветра и его завихренность. Сделан вывод, что современные массивы спутниковых данных и атмосферные ре-анализы, вероятнее всего, недооценивают величину завихренности касательного напряжениятрения ветра и её вклад в суммарные скорости подъёма вод подповерхностных слоёв в окрестности апвеллингов рассматриваемого типа.

Об авторах

А. Б. Полонский

Институт природно-технических систем

Email: apolonsky5@mail.ru
Севастополь, Россия

Список литературы

  1. Полонский А.Б., Серебренников А.Н. Интенсификация крупномасштабных апвеллингов в Атлантическом и Тихом океанах при современных климатических условиях // Доклады РАН. 2020. Т. 492. № 2. С. 105–110.
  2. Bakun A., Field D.B., Redondo-Rodriguez A. et al. Greenhouse Gas, Upwelling-Favorable Winds, and the Future of Coastal Ocean Upwelling Ecosystems // Global Change Biology. 2010. V. 16. № 4. P. 1213–1228. https://doi.org/10.1111/j.1365–2486.2009.02094.x
  3. Polonsky A. The Ocean’s Role in Climate Change. Cambridge Scholars Publishing, Newcastle. UK. 2019. 294 p.
  4. Seabra R., Varela R., Santos A.M. et al. Reduced Near-shore Warming Associated With Eastern Boundary Upwelling Systems // Front. Mar. Sci. 2019. V. 6. P. 104. https://doi.org/10.3389/fmars.2019
  5. Varela R., Álvarez I., Santos F. et al. Has Upwelling Strengthened along Worldwide Coasts over 1982–2010? // Sci. Rep. 2015. V. 5. P. 10016. https://doi.org/10.1038/ srep10016
  6. Samelson R.M., O’NeilL L.W., Chelton D.B. et al. Surface Stress and Atmospheric Boundary Layer Response to Mesoscale SST Structure in Coupled Simulations of the Northern California Current System // Monthly Weather Review. 2020. V. 148. P. 259–286. https://doi.org/10.1175/MWR-D-19-0200.1
  7. Seo H., O’Neill L.W., Bourassa M.A. et al. Ocean Mesoscale and Frontal-Scale Ocean–Atmosphere Interactions and Influence on Large-Scale Climate: A Review // J. of Climate. 2023. V. 36. P. 1981–2013.
  8. Chelton D.B., Schlax M.G., Freilich M.H. et al. Satellite measurements reveal persistent small-scale features in ocean winds // Science. 2004. V. 303. P. 978–983. https://doi.org/10.1175/JCLI-D-21-0982.1
  9. Hashizume H., Xie S.-P., Fujiwara M. et al. Direct Observations of Atmospheric Boundary Layer Response to SST Variations Associated with Tropical Instability Waves over the Eastern Equatorial Pacific // J. of Climate. 2002. V. 15 (23). P. 3379–3393. https://doi.org/10.1175/1520-0442(2002)015<3379:DOOABL>2.0.CO;2
  10. Ekman V.W. On the influence of the Earth’s rotation on ocean currents // Arch. Math. Astron. Fysik. 1905. Bd. 2. H. 1/2. № 11. P. 1–52.
  11. Akerblom F. Rechercher sur les courants le plus bas de l’atmosphere au-dessus de Paris. Nova Acta, Regic Societatis Scientarum // Upsala Ser. IV. 1908. V. 2. № 2. Р. 203–251.
  12. Полонский А.Б. Горизонтально-неоднородный деятельный слой океана и его моделирование. Обнинск: Изд-во ВНИИГМИ-МЦД, 1989. 234 с.
  13. Bykov Ph.L., Gordin V.A. Complex turbulent exchange coefficient in Akerblom–Ekman model // Journal of Inverse and Ill-posed Problems. 2024. V. 32. № 2. Р. 199–211. https://doi.org/10.1515/jiip-2021-0039
  14. Монин А.С., Яглом А.М. Статистическая гидромеханика. Т. 2. М.: Наука, 1967. 720 с.
  15. Mellor G.L., Durbin P.A. The structure and dynamics of the ocean surface mixed layer // J. Phys. Oceanogr. 1976. V. 5 (4). P. 718–728.
  16. Mellor G.L., Yamada T. Development of a turbulent closure model for geophysical fluid problems // Rev. of Geophysics. 1982. V. 20. P. 851–875.
  17. Emery W.J., Lee W.G., Magaard L. Geographic and Seasonal Distributions of Brent – Vaisala Frequency and Rossby Radii in the North Pacific and North Atlantic // J. Phys. Oceanog. 1984. V. 14 (2). P. 94–317.
  18. Kara A.B., Wallcraft A.J., Barron C.N. et al. Accuracy of 10 m Wind Speeds from Satellites and NWP Products Near Land–Sea Boundaries // J. Geophys. Res. 2008. V. 113. Is. C10. https://doi.org/10.1029/2007JC004516
  19. Hilburn K.A., Meissner T., Wentz F.J. et al. Ocean vector winds from WindSat two-look polarimetric radiances // IEEE Trans. Geosci. Remote Sens. 2016. V. 54. P. 918–931. https://doi.org/10.1109/TGRS.2015.2469633
  20. Полонский А.Б., Серебренников А.Н. Долгопериодные тенденции интенсивности восточных пограничных апвелинговых систем по различным спутниковым данным. Ч. 1: Атлантические апвеллинги // Исследования Земли из космоса. 2021. № 5. C. 31–45. https://doi.org/10.31857/S0205961421050079

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).