SIMULATED MICROGRAVITY AND COCULTURING WITH HEMATOPOIETIIC CELLS OPPOSITELY MODULATE WNT SIGNALING IN MESENCHYMAL STROMAL CELLS

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The osteogenic potential of mesenchymal stromal cells (MSCs) can determine the bone homeostasis and the physical characteristics of bones. Microgravity reduces the ability of these cells to differentiate in osteogenic direction. It has been shown that the addition of hematopoietic stem and progenitor cells (HSPCs) to MSC culture in vitro can have the opposite effect. The aim of this study was to identify transcriptional changes in 84 genes associated with Wnt signaling in MSCs during microgravity simulation and interaction with HSPCs. The results indicate an increase in the non-canonical Wnt signaling activity during MSCs and HSPCs cocultivation, while simulated microgravity enhances the canonical component of this signaling pathway. These changes may underlie the modulation of osteogenic potential of MSCs in hematopoietic niche under microgravity.

Авторлар туралы

A. Ratushnyy

Institute of Biomedical Problems, Russian Academy of Sciences

Email: buravkova@imbp.ru
Russian Federation, Moscow

E. Tyrina

Institute of Biomedical Problems, Russian Academy of Sciences

Email: buravkova@imbp.ru
Russian Federation, Moscow

L. Buravkova

Institute of Biomedical Problems, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: buravkova@imbp.ru
Russian Federation, Moscow

Әдебиет тізімі

  1. Buravkova L.B., Gershovich P.M., Gershovich J.G., et al. Mechanisms of gravitational sensitivity of osteogenic precursor cells //Acta Naturae (англоязычная версия). 2010. V. 2. № 1 (4). P. 28–35.
  2. Man J., Graham T., Squires-Donelly G., et al. The effects of microgravity on bone structure and function // npj Microgravity. 2022. V. 8. № 1. P. 1–15.
  3. Andreeva E.R., Ezdakova M.I., Bobyleva P.I., et al. Osteogenic Commitment of MSC Is Enhanced after Interaction with Umbilical Cord Blood Mononuclear Cells In Vitro //Bulletin of Experimental Biology and Medicine. 2021. V. 171. № 4. P. 541–546.
  4. Jia Y., Zhang C., Zheng X., et al. Co-cultivation of progenitor cells enhanced osteogenic gene expression and angiogenesis potential in vitro // Journal of International Medical Research. 2021. V. 49. № 4. P. 03000605211004024.
  5. Yang X., Sun L.W., Liang M., et al. The response of wnt/ß-catenin signaling pathway in osteocytes under simulated microgravity // Microgravity Science and Technology. 2015. V. 27. № 6. P. 473–483.
  6. Houschyar K.S., Tapking C., Borrelli M.R., et al. Wnt pathway in bone repair and regeneration–what do we know so far //Frontiers in cell and developmental biology. 2019. V. 6. P. 170.
  7. Takam Kamga P., Bazzoni R., Dal Collo G., et al. The role of notch and Wnt signaling in MSC communication in normal and leukemic bone marrow niche // Frontiers in cell and developmental biology. 2021. V. 8. P. 599276.
  8. Dominici M., Le Blanc K., Mueller I., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement //Cytotherapy. 2006. V. 8. № 4. P. 315–317.
  9. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2– ΔΔCT method //methods. 2001. V. 25. № 4. P. 402–408.
  10. Gu Q., Tian H., Zhang K., et al. Wnt5a/FZD4 mediates the mechanical stretch-induced osteogenic differentiation of bone mesenchymal stem cells //Cellular Physiology and Biochemistry. 2018. V. 48. № 1. P. 215–226.
  11. Yang X., Sun L.W., Liang M., et al. The response of wnt/ß-catenin signaling pathway in osteocytes under simulated microgravity //Microgravity Science and Technology. 2015. V. 27. № 6. P. 473–483.
  12. Jothimani G., Di Liddo R., Pathak S., et al. Wnt signaling regulates the proliferation potential and lineage commitment of human umbilical cord derived mesenchymal stem cells //Molecular Biology Reports. 2020. V. 47. № 2. P. 1293–1308.
  13. Albers J., Keller J., Baranowsky A., et al. Canonical Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin //Journal of Cell Biology. 2013. V. 200. № 4. P. 537–549.
  14. Ono M., Inkson C.A., Kilts T.M., et al. WISP-1/CCN4 regulates osteogenesis by enhancing BMP-2 activity // Journal of Bone and Mineral Research. 2011. V. 26. №. 1. P. 193–208.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (287KB)
3.

Жүктеу (596KB)

© А.Ю. Ратушный, Е.А. Тырина, Л.Б. Буравкова, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».