Clinical application of high-precision neuroimaging methods in newborns with brain injuries
- 作者: Perepelitsa S.A.1,2
-
隶属关系:
- Imannuel Kant Baltic Federal University
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
- 期: 卷 2, 编号 4 (2020)
- 页面: 329-336
- 栏目: REVIEWS
- URL: https://ogarev-online.ru/2658-6843/article/view/54463
- DOI: https://doi.org/10.36425/rehab54463
- ID: 54463
如何引用文章
全文:
详细
In order to reduce postnatal dysfunction of the central nervous system and prevent irreversible consequences, the concept of early rehabilitation of newborns has been formulated and implemented. When planning a rehabilitation program, an individual approach to the child is required, taking into account the characteristics of his development. A comprehensive assessment of the anatomical and functional state of the brain of a newborn with the help of high-precision neuroimaging technologies that can be used at different stages of rehabilitation treatment deserves special attention.
作者简介
Svetlana Perepelitsa
Imannuel Kant Baltic Federal University; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
编辑信件的主要联系方式.
Email: sveta_perepeliza@mail.ru
ORCID iD: 0000-0002-4535-9805
Dr Sci, Professor
俄罗斯联邦, 14, А. Nevskiy str., Kaliningrad, 236041; Moscow参考
- Jarjour IT. Neurodevelopmental outcome after extreme prematurity: a review of the literature. Pediatr Neurol. 2015; 52(2):143–152. doi: 10.1016/j.pediatrneurol.2014.10.027.
- Овчинникова Т.В., Таранушенко Т.Е., Салмина А.Б., Карпова Л.Н. Структура заболеваемости недоношенных детей, рожденных с очень низкой и низкой массой тела // Педиатрия. — 2018. — Т. 97. — № 1. — С. 162–166. [Ovchinnikova TV, Taranushenko TE, Salmina AB, Karpova LN. Morbidity structure of premature infants born with very low and low birth weight. Pediatrics. 2018;97(1):162–166. (In Russ).]
- Основные показатели здоровья матери и ребенка, деятельность службы охраны детства и родовспоможения в Российской Федерации. Сборник. — М., 2019. — 170 с. [The main indicators of maternal and child health, the activities of the child welfare and obstetric service in the Russian Federation. Collection. Moscow; 2019. 170 р. (In Russ).]
- Ремнева О.В., Фадеева Н.И., Кореновский Ю.В., Черкасова Т.М. Прогнозирование и ранняя диагностика тяжелых церебральных расстройств у недоношенных новорожденных // Педиатрия. — 2015. — Т. 94. — № 1. — С. 13–18. [Remneva OV, Fadeeva NI, Korenovskiy YuV, Cherkasova TM. Prediction and early diagnosis of severe cerebral disorders in premature infants. Pediatrics. 2015;94(1):13–18. (In Russ).]
- Михеева И.Г., Лопанчук П.А., Кузнецова Ю.А., и др. Микрососудистые нарушения у новорожденных детей различного гестационного возраста с гипоксически- ишемическим поражением ЦНС // Педиатрия. — 2017. — Т. 96. — № 1. — С. 10–15. [Mikheeva IG, Lopanchuk PA, Kuznetsova YuA, et al. Microvascular disorders in newborns of different gestational ages with hypoxic-ischemic lesions of the central nervous system. Pediatrics. 2017;96(1):10–15. (In Russ).]
- Van der Knoop BJ, Zonnenberg IA, Verbeke ML, et al. Additional value of advanced neurosonography and magnetic resonance imaging in fetuses at risk for brain damage. Ultrasound Obstet Gynecol. 2020;56(3):348–358. doi: 10.1002/uog.21943.
- Fritz J, Polansky SM, O’Connor SC. Neonatal neurosonography. Semin Ultrasound CT MR. 2014;35(4):349–364. doi: 10.1053/j.sult.2014.05.009.
- American Institute of Ultrasound in Medicine (AIUM): American College of Radiology (ACR); Society of Radiologists in Ultrasound (SRU) Collaborators. AIUM practice guideline for the performance of neurosonography in neonates and infants. J Ultrasound Med. 2014;33(6): 1103–1110. doi: 10.7863/ultra.33.6.1103.
- Agut T, Alarcon A, Cabañas F, et al. Preterm white matter injury: ultrasound diagnosis and classification. Pediatr Res. 2020;87(Suppl 1):37–49. doi: 10.1038/s41390-020-0781-1.
- Ballardini E, Tarocco A, Baldan A, et al. Universal cranial ultrasound screening in preterm infants with gestational age 33–36 weeks. A retrospective analysis of 724 newborns. Pediatr Neurol. 2014;51(6):790–794. doi: 10.1016/j.pediatrneurol.2014.08.012.
- Ballardini E, Tarocco A, Rosignoli C, et al. Universal head ultrasound screening in full-term neonates: a retrospective analysis of 6771 infants. Pediatr Neurol. 2017;71:14–17. doi: 10.1016/j.pediatrneurol.2017.03.012.
- Alderliesten T, Lemmers PM, Smarius JJ, et al. Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage. J Pediatr. 2013;162(4):698–704.e692. doi: 10.1016/ j.jpeds.2012.09.038.
- Waitz M, Nusser S, Schmid MB, et al. Risk factors associated with intraventricular hemorrhage in preterm infants with ≤28 weeks gestational age. Klin Padiatr. 2016;228(5): 245–250. doi: 10.1055/s-0042-111689.
- Nikolaeva GV, Sidorenko EI, Guseva MR, Akbasheva NG. [Neurological disorders in preterm children with neuropathy. (In Russ).] Zh Nevrol Psikhiatr Im S S Korsakova. 2017;117(11 Vyp 2):41–46. doi: 10.17116/ jnevro201711711241-46.
- Weise J, Heckmann M, Bahlmann H, et al. Analyses of pathological cranial ultrasound findings in neonates that fall outside recent indication guidelines: results of a population-based birth cohort: survey of neonates in Pommerania (SNiP-study). BMC Pediatr. 2019;19(1):476. doi: 10.1186/s12887-019-1843-6.
- Ball G, Boardman JP, Rueckert D, et al. The effect of preterm birth on thalamic and cortical development. Cereb Cortex. 2012;22(5):1016–1024. doi: 10.1093/cercor/bhr176.
- Padilla N, Alexandrou G, Blennow M, et al. Brain growth gains and losses in extremely preterm infants at term. Cerebral Cortex. 2015;25(7):1897–1905. doi: 10.1093/ cercor/bht431.
- Greisen G. Autoregulation of cerebral blood flow in newborn babies. Early Hum Dev. 2005;81(5):423–428. doi: 10.1016/j.earlhumdev.2005.03.005.
- Faust K, Härtel C, Preuß M, et al. Short-term outcome of very-low-birthweight infants with arterial hypotension in the first 24 h of life. Arch Dis Child Fetal Neonatal Ed. 2015;100:F388–F392. doi: 10.1136/archdischild- 2014-306483.
- Camfferman FA, de Goederen R, Govaert P, et al. Diagnostic and predictive value of Doppler ultrasound for evaluation of the brain circulation in preterm infants: a systematic review. Pediatr Res. 2020;87(Suppl 1):50–58. doi: 10.1038/s41390-020-0777-x.
- Kumar AS, Chandrasekaran A, Asokan R, Gopinathan K. Prognostic value of resistive index in neonates with hypoxic ischemic encephalopathy. Indian Pediatr. 2016; 53(12):1079–1082.
- Краева О.А, Башмакова Н.В. Особенности центральной и церебральной гемодинамики у недоношенных новорожденных в неонатальном периоде // Лечение и профилактика. — 2018. — Т. 8. — № 1. — С. 31–36 [Kraeva OA, Bashmakova NV. Features of central and cerebral hemodynamics in premature infants in the neonatal period. Treatment and Prevention. 2018;8(1):31–36. (In Russ).]
- Vutskits L. Cerebral blood flow in the neonate. Paediatr Anaesth. 2014;24(1):22–29. doi: 10.1111/pan.12307.
- Deeg KH. Sonographic and doppler sonographic diagnosis of neonatal ischemic stroke. Ultraschall Med. 2017;38(4):360–376. doi: 10.1055/s-0043-114409.
- Ольхова Е.Б., Дубасова Н.М., Полякова Е.В. Нейросонография в диагностике синус-тромбозов у младенцев // Радиология-практика. — 2018. — Т. 72. — № 6. — С. 6–21. [Olkhova EB, Dubasova NM, Polyakova EV. Neurosonography in the diagnostics of sinus-thrombosis in infants. Radiology Practice. 2018;6(72):6–21. (In Russ).]
- Guan B, Dai C, Zhang Y, et al. Early diagnosis and outcome prediction of neonatal hypoxic-ischemic encephalopathy with color Doppler ultrasound. Diagn Interv Imaging. 2017;98(6):469–475. doi: 10.1016/j.diii.2016.12.001.
- Bolisetty S, Dhawan A, Abdel-Latif M, et al. Intraventricular hemorrhage and neurodevelopmental outcomes in extreme preterm infants. Pediatrics. 2014;133:55–62. doi: 10.1542/peds.2013-0372.
- Jarjour IT. Neurodevelopmental outcome after extreme prematurity: a review of the literature. Pediatr Neurol. 2015;52(2):143–152.doi: 10.1016/j.pediatrneurol. 2014.10.027.
- Vik SD, Torp H, Follestad T, et al. NeoDoppler: New ultrasound technology for continuous cerebral circulation monitoring in neonates. Pediatr Res. 2020;87(1):95–103. doi: 10.1038/s41390-019-0535-0.
- Peeples ES, Mehic E, Mourad PD, Juul SE. Fast Doppler as a novel bedside measure of cerebral perfusion in preterm infants. Pediatr Res. 2016;79(2):333–338. doi: 10.1038/pr.2015.227.
- Demené C, Pernot M, Biran V, et al. Ultrafast Doppler reveals the mapping of cerebral vascular resistivity in neonates. J Cereb Blood Flow Metab. 2014;34(6):1009–1017. doi: 10.1038/jcbfm.2014.49.
- Demené C, Deffieux T, Pernot M, et al. Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases Doppler and fultrasound sensitivity. IEEE Trans Med Imaging. 2015;34(11):2271–2285. doi: 10.1109/TMI.2015.2428634.
- Demené C, Mairesse J, Baranger J, et al. Ultrafast Doppler for neonatal brain imaging. NeuroImage. 2019;185: 851–856. doi: 10.1016/j.neuroimage.2018.04.016.
- Tanter M, Fink M. Ultrafast imaging in biomedical ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2014; 61(1):102–119. doi: 10.1109/TUFFC.2014.6689779.
- Hwang M, Piskunowicz M, Darge K. Advanced ultrasound techniques for pediatric imaging. Pediatrics. 2019; 143(3):e20182609. doi: 10.1542/peds.2018-2609.
- Demene C, Baranger J, Bernal M, et al. Functional ultrasound imaging of brain activity in human newborns. Sci Transl Med. 2017;9(411):eaah6756. doi: 10.1126/scitranslmed.aah6756.
- Demené C, Tiran E, Sieu LA, et al. 4D microvascular imaging based on ultrafast Doppler tomography. NeuroImage. 2016;127:472–483. doi: 10.1016/j.neuroimage.2015.11.014.
- Hingot V, Brodin C, Lebrun F, et al. Early Ultrafast Ultrasound Imaging of Cerebral Perfusion correlates with Ischemic Stroke outcomes and responses to treatment in Mice. Theranostics. 2020;10(17):7480–7491. doi: 10.7150/thno.44233.
- Caballero-Gaudes C, Reynolds RC. Methods for cleaning the BOLD fMRI signal. NeuroImage. 2017;154:128–149. doi: 10.1016/j.neuroimage.2016.12.018.
- Buchbinder BR. Functional magnetic resonance imaging. Handbook of Clinical Neurology. 2016;135(4):61–92. doi: 10.1016/B978-0-444-53485-9.00004-0.
- Huettel SA. Functional MRI (fMRI). Encyclopedia of Spectroscopy and Spectrometry. Third Edition. Elsevier Ltd.; 2017. Р. 778–784. doi: 10.1016/B978-0-12- 803224-4.00053-4.
- Vasung L, Turk EA, Ferradal SL, et al. Exploring early human brain development with structural and physiological neuroimaging. NeuroImage. 2019;187:226–254. doi: 10.1016/j.neuroimage.2018.07.041.
- Tanter M, Fink M. Ultrafast imaging in biomedical ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(1):102–119. doi: 10.1109/TUFFC.2014.6689779.
- Shmuel A. On the relationship between functional MRI signals and neuronal activity. Casting Light on the Dark Side of Brain Imaging; 2019. Р. 49–53. doi: 10.1016/ B978-0-12-816179-1.00007-4.
- Arichi T, Fagiolo G, Varela M, et al. Development of BOLD signal hemodynamic responses in the human brain. NeuroImage. 2012;63(2):663–673. doi: 10.1016/ j.neuroimage.2012.06.054.
- Kirton A. Modeling developmental plasticity after perinatal stroke: defining central therapeutic targets in cerebral palsy. Pediatr Neurol. 2013;48(2):81–94. doi: 10.1016/ j.pediatrneurol.2012.08.001.
- Scheef L, Nordmeyer-Massner JA, Smith-Collins AP, et al. Functional laterality of task-evoked activation in sensorimotor cortex of preterm infants: an optimized 3 T fMRI study employing a customized neonatal head coil. PLoS One. 2017;12(1):e0169392. doi: 10.1371/journal.pone.0169392.
- Gao W, Alcauter S, Elton A, et al. Functional network development during the first year: relative sequence and socioeconomic correlations. Cereb Cortex. 2015;25(9): 2919–2928. doi: 10.1093/cercor/ bhu088.
- Adhikari MH, Beharelle RA, Griffa A, et al. Computational modeling of resting-state activity demonstrates markers of normalcy in children with prenatal or perinatal stroke. J Neurosci. 2015;35(23):8914–8924. doi: 10.1523/JNEUROSCI.4560-14.2015.
- Manning KY, Menon RS, Gorter JW, et al. Neuroplastic sensorimotor resting state network reorganization in children with hemiplegic cerebral palsy treated with constraint-induced movement therapy. J Child Neurol. 2015; 31(2):1–7. doi: 10.1177/0883073815588995.
- Smyser CD, Neil JJ. Use of resting-state functional MRI to study brain development and injury in neonates. Semin Perinatol. 2015;39(2):130–140. doi: 10.1053/ j.semperi.2015.01.006.
- Ferradal SL, Gagoski B, Jaimes C, et al. System-specific patterns of thalamocortical connectivity in early brain development as revealed by structural and functional MRI. Cereb Cortex. 2019;29(3):1218–1229. doi: 10.1093/cercor/bhy028.
- Graham AM, Pfeifer JH, Fisher PA, et al. The potential of infant fMRI research and the study of early life stress as a promising exemplar. Dev Cogn Neurosci. 2015;12:12–39. doi: 10.1016/j.dcn.2014.09.005.
- Lordier L, Loukas S, Grouiller F, et al. Music processing in preterm and full-term newborns: a psychophysiological interaction (PPI) approach in neonatal fMRI. NeuroImage. 2019;185:857–864. doi: 10.1016/j.neuroimage.2018.03.078.
- Bleyenheuft Y, Dricot L, Gilis N, et al. Capturing neuroplastic changes after bimanual intensive rehabilitation in children with unilateral spastic cerebral palsy: a combined DTI, TMS and fMRI pilot study. Res Dev Disabil. 2015; 43–44:136–149. doi: 10.1016/j.ridd.2015.06.014.
补充文件
